大整数幂求模问题

一、 问题描述:
计算 (a^power) % m , 其中power 是非负的大整数, a, m 为大于1 的整数。

二、 问题分析:
很显然, 由于 power 是大整数,因此,必须考虑到幂计算的溢出问题。怎么避免溢出呢? 可以通过降低幂次、逐次取模来实现。一个自然的想法是,将power 分成两个整数之和, power = n1 + n2,则 a^power = (a^n1) * (a^n2) . 通常采用二分法, n1 = n2 或 |n1-n2| = 1 。这就涉及到 (a * b) % m 的计算 。
不难证明: (a * b) % m = ((a % m) * (b % m)) % m。
证明如下: 设 a = pm + r1, b = qm + r2 , 则 r1 = a % m, r2 = b % m ,
则 (a * b) % m = (r1 * r2) % m = ((a % m) * (b % m)) % m. 证毕。

特别地,当 a = b 时, (a^2) % m = ((a % m)^2) % m ; 这是一个简单却又关键性的结论。

三、 算法设计:

算法1: 分治策略:
(1)若power 为奇数: 令 power = 2k+1, k 为非负整数 , 则
a^(2k+1) = (a^k)^2 *a ; a^(2k+1) % m = ((a^k % m)^2 % m * a) % m
(2) 若power 为偶数: 令 power = 2k, k为非负整数, 则
a^(2k) = (a^k)^2 ; a^(2k) % m = (a^k % m)^2 % m
(3) 若power == 1 : 返回 a % m ; 若 power == 0: 返回 1 % m。

据以上(1)/(2)/(3) 条, 即可设计出相应的递归求解程序。时间复杂度为T(n) = T(n/2) + C = O(logn) ,空间复杂度为 O(1), 不足之处在于有一定的递归调用开销。

算法2: 整数的二进制分解
将大整数 power 按照二进制进行分解:
power = a[N] * 2^N + a[N-1] * 2^(N-1) + … + a[1] * 2 + a[0]
其中: a[i] 取值为 0 或 1 ( i=0,1,.., N),则
a^power = a^(a[N] * 2^N) * a^(a[N-1] * 2^(N-1)) * … * a^(a[1] * 2) * a^a[0]
很显然:
(1) 若 a[i] = 0, 则 a[i] * 2^i = 0 , a^(a[i]*2^i) = 1, 该乘积项可以消去;
(2) 若 a[i] = 1, 则 a[i] * 2^i = 2^i , a^(2^i) % m = (a^(2^(i-1)) % m)^2 % m.
令 temp = a^(2^(i-1)) % m , 则 a^(2^i) % m = (temp * temp) % m。
比如, power = 26 = 16 + 8 + 2 = (11010)2, 则 a^26 = a^(2^4 + 2^3 + 2^1);
计算 a^power 实际上是计算 power 的二进制表示中所有位为1对应的乘积项。
(a^26) % m = ((a^16 %m) * (a^8 %m) * (a^2 % m)) %m
而, a^8 % m = ((a^4 %m) × (a^4%m)) % m 是可以用动态规划法逐次求解的。 简单起见, 将 (a^i) % m 称为 “取模乘积项”。

算法描述:
令 temp = a^(2^i) % m , i 是 power 的当前二进制位所对应的位置,
temp 表示 power 的当前二进制位所对应的(取模)乘积项
STEP1: 初始化 temp 为 a % m , result = 1;
STEP2: 对 power 进 行二进制分解。 若 power >=1 , 则进行模2运算:否则转至 STEP3
[1] 若余数为1, 则该位置上的二进制为1, 乘积中需要加入此时的 temp 项 : result = (result * temp) % m;
下一个二进制位对应的乘积项为 temp = (temp * temp) % m
[2] 若余数为0, 则该位置上的二进制为0,乘积中不需要加入 temp 项, result 保持不变,
下一个二进制位对应的乘积项为 temp = (temp * temp) % m
STEP3: 所有的二进制位对应的乘积项都已计算,算法结束。

比如, result = (3^26) % 5 的计算过程如下:26 = (11010)2 ;
(1)初始化: temp = 3^1 % 5 = 3;, result = 1 ;
(2) 检测 26 的最低位二进制为0, 则 不加入乘积项,result = 1, temp =(3^2) % 5 = (temp * temp) % 5 = 4
(3) 检测 26 的次低位二进制为1, 则 加入乘积项, result = (result * temp) % 3 = 4 , temp = (3^4) % 5 = (4*4) % 5 = 1;
(4) 检测 26 的次低位二进制为0, 则 不加入乘积项, result = 4, temp = (3^8) % 5 = (1*1) % 5 = 1;
(5) 检测 26 的次低位二进制为1, 则 加入乘积项, result = (result * temp) % 5 = 4, temp = (3^16) % 5 = 1;
(6) 检测 26 的次低位二进制为1, 则 加入乘积项, result = (result * temp) % 5 = 4, temp = (3^32) % 5 = 1.
由于所有位都检测完毕, 故 3^26 % 5 = 4. 由上可知,
3^26 % 5 = ((3^16) % 5)) * ((3^8) % 5) * ((3^2) % 5) % 5. 其中 3^16 % 5, 3^8 % 5, 3^2 % 5 是通过动态规划法逐渐求得的。

完整的程序如下:
程序在 Ubuntu10.10 gcc4.4.5 环境下编译运行通过。
$ gcc -g -Wall bintmode.c runtime.c -o bintmode # 编译连接
$ bintmode or gdb bintmode # 运行

[cpp] view plaincopyprint?
/*
* bintmode.c : 此程序计算 (a^power) % mod. power 是大整数
* 基本公式: (a*b) mod m = ((a mod m) * (b mod m)) mod m
*/

#include <stdio.h>
#include <assert.h>

int modMRec(int, int, int);
int modMDyn(int, int ,int);
void testModMRec(int);
void testModMDyn(int);

void testValid(int (*fun)(int a, int power, int mode));
void testInvalid(int (*fun)(int a, int power, int mode));

int main()
{
printf(" ******** 使用递归技术求解: ******** \n");
testValid(modMRec);
/* testInvalid(modMRec); */
defRuntime(testModMRec);

printf(" ******** 使用二进制分解技术求解: ******** \n");
testValid(modMDyn);
/* testInvalid(modMDyn); */
defRuntime(testModMDyn);

return 0;
}

/*
* modMRec: 递归求解 (a^power) % mod , power 是个大整数
*/
int modMRec(int a, int power, int mod)
{
assert(a>=1 && power >=0 && mod >=1);
if (power == 0) {
return 1 % mod;
}
if (power == 1) {
return a % mod;
}
if (power % 2 != 0) {
int temp = modMRec(a, power/2, mod);
return (temp * temp * a) % mod;
}
else {
int temp = modMRec(a, power/2, mod);
return (temp * temp) % mod;
}
}

/*
* modMDyn: 使用二进制分解技术求解 (a^power) % mod , power 是个大整数
*/
int modMDyn(int a, int power, int mod)
{
assert(a>=1 && power >=0 && mod >=1);
int result = 1;
int temp = a % mod;
while (power >= 1) {
if (power % 2 != 0) {
result = (result * temp) % mod;
}
temp = (temp * temp) % mod;
power /= 2;
}
return result;
}

void testValid(int (*fun)(int a, int power, int mode))
{
int base[5] = {2,3,5,7,11};
int i,k;

for (i=0; i < 5; i++) {
for (k = 0; k < 20; k++) {
printf("%d ^ %d mod %d = %d .\n", base[i], k, 10, (*fun)(base[i], k, 10));
}
}
}

void testInvalid(int (*fun)(int a, int power, int mode))
{
printf("0 ^ 3 mod 5");
(*fun)(0, 3, 5);
printf("3 ^ -1 mod 5");
(*fun)(3, -1, 5);
printf("3 ^ 5 mod 0");
(*fun)(3, 5, 0);
}

void testModMRec(int n)
{
modMRec(2, n, 10);
}

void testModMDyn(int n)
{
modMDyn(2, n , 10);
}

[cpp] view plaincopyprint?
#include <stdio.h>
#include <time.h>

#define MAX_SCALE 10

long defScale[MAX_SCALE] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};

/* runtime: 测量 fun 指向的函数的运行时间
* fun: 指向测试函数的指针 ;
* scale: 问题规模数组
*/
void runtime(void (*fun)(long scale), long* scale, int len);

void defRuntime(void (*fun)(long scale));

void runtime(void (*fun)(long scale), long *scale, int len)
{
int i;
clock_t start, end;
for (i = 0; i < len; i++) {
start = clock();
(*fun)(scale[i]);
end = clock();
printf("scale: %12ld\t run time: %8.4f (ms). \n", scale[i], ((double)(end-start)) * 1000 / CLOCKS_PER_SEC);
}
}

void defRuntime(void (*fun)(long scale))
{
runtime(fun, defScale, MAX_SCALE);
}


四、总结: 关于科学计算的算法
1. 往往要先查阅相关资料,了解相应的数学性质及结论,并对问题进行化简;例如本例中使用 (a*b)%m = ((a%m)*(b%m))%m 的模性质,避免了乘法溢出的问题。
2. 可以首选分治法和二进制分解法。分治法将所要求解的数值规模减半,而二进制分解则从数值的一个特别角度来寻求问题的解答。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值