泛型矩阵类

所有矩阵,加法和乘法操作都是类似,所以设计一个父类,不用管元素类型,目的描述所有类型的矩阵共享的通用操作

创建若干适用于指定矩阵类型的子类,实例:两种类型int和Rational的实现

对int类型,包装类Integer应该用于将一个int类型的值包装到一个对象中,从而对象被传递给方法进行操作

public abstract class GerericMatrix<E extends Number> {

protected abstract E add(E o1 , E o2);
protected abstract E muktiply(E o1 ,E o2 );
protected abstract E zero();

public E[][] addMatrix(E[][] matrix1, E[][] matrix2){
if(matrix1.length != matrix2.length||matrix1[0].length != matrix2[0].length){
throw new RuntimeException("行列数不一致");
}

一、实验目的 熟练掌握Java中一维数组、多维数组的使用方法。 使用Java数组解决一般性的应用问题。 二、实验内容 1、在main方法中创建一个含有10个元素的int型数组,进行以下操:(1)将数组元素按照从小到大的顺序排列;(2)对排好序的数组使用折半查找(使用递归和非递归两种形式分别实现)查找某一个int元素。 2、使用一维数组编码实现一个栈(Stack)要求提供以下操:(1)boolean isEmpty():判断栈当前是否为空;(2)入栈操void push(obj):把数据元素obj插入堆栈;(3)出栈操Object pop():出栈,并返回删除的数据元素;(4)Object getTop():取堆栈当前栈顶的数据元素并返回。编写代码测试所形成的Stack,然后利用Stack实现以下功能:输入一个正整数,输出该整数所对应的二进制数。 3、按照要求使用Java编码。 以型int[][]声明一个叫matrix二维数组变量,将矩阵初始化为一个5个元素的数组。 以下列方式为matrix的内部元素赋值:matrix从零开始循环到其长度值;例如索引为i,在每次迭代中,将matrix[i]指向一个新的整数数组,其长度为i。然后用索引变量j,对数组中的每一个元素进行循环。在每次内部循环中,将matrix[i][j]赋值为(i*j)。 通过循环打印matrix中的所有元素,结果为:   <>   <0>   <0 2>   <0 3 6>   <0 4 8 12> 4、利用二维数组实现一个矩阵Matrix要求提供以下操:(1)set(int row, int col, double value):将第row行第col列的元素赋值为value;(2)get(int row,int col):取第row行第col列的元素;(3)width():返回矩阵的列数;(4)height():返回矩阵的行数;(5)Matrix add(Matrix b):返回当前矩阵矩阵b相加后的结果矩阵;(6)Matrix multiply(Matrix b):返回当前矩阵矩阵b相乘后的结果矩阵。(7)print():打印出当前矩阵的值。
以下是实现泛型矩阵的基本运算的代码,其中包括矩阵和方阵的实现,以及主函数。 ```cpp #include <iostream> #include <cstdlib> #include <ctime> using namespace std; template <typename T> class Matrix { protected: int m, n; T **data; public: Matrix(int m, int n) { this->m = m; this->n = n; data = new T *[m]; for (int i = 0; i < m; i++) { data[i] = new T[n]; for (int j = 0; j < n; j++) { data[i][j] = 0; } } } Matrix(const Matrix &matrix) { m = matrix.m; n = matrix.n; data = new T *[m]; for (int i = 0; i < m; i++) { data[i] = new T[n]; for (int j = 0; j < n; j++) { data[i][j] = matrix.data[i][j]; } } } virtual ~Matrix() { for (int i = 0; i < m; i++) { delete[] data[i]; } delete[] data; } Matrix &operator=(const Matrix &matrix) { if (&matrix != this) { for (int i = 0; i < m; i++) { delete[] data[i]; } delete[] data; m = matrix.m; n = matrix.n; data = new T *[m]; for (int i = 0; i < m; i++) { data[i] = new T[n]; for (int j = 0; j < n; j++) { data[i][j] = matrix.data[i][j]; } } } return *this; } Matrix operator+(const Matrix &matrix) const { Matrix result(m, n); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { result.data[i][j] = data[i][j] + matrix.data[i][j]; } } return result; } Matrix operator-(const Matrix &matrix) const { Matrix result(m, n); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { result.data[i][j] = data[i][j] - matrix.data[i][j]; } } return result; } void show() const { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { cout << data[i][j] << "\t"; } cout << endl; } } }; template <typename T> class SquareMatrix : public Matrix<T> { public: SquareMatrix(int n) : Matrix<T>(n, n) { } SquareMatrix(const SquareMatrix &matrix) : Matrix<T>(matrix) { } T determinant() const { if (this->n == 1) { return this->data[0][0]; } else if (this->n == 2) { return this->data[0][0] * this->data[1][1] - this->data[0][1] * this->data[1][0]; } else { T det = 0; for (int i = 0; i < this->n; i++) { SquareMatrix submatrix(this->n - 1); for (int j = 1; j < this->n; j++) { for (int k = 0; k < this->n; k++) { if (k < i) { submatrix.data[j - 1][k] = this->data[j][k]; } else if (k > i) { submatrix.data[j - 1][k - 1] = this->data[j][k]; } } } T subdet = submatrix.determinant(); if (i % 2 == 0) { det += this->data[0][i] * subdet; } else { det -= this->data[0][i] * subdet; } } return det; } } SquareMatrix operator*(const SquareMatrix &matrix) const { if (this->n != matrix.m) { throw "Invalid matrix dimensions"; } SquareMatrix result(this->n); for (int i = 0; i < this->n; i++) { for (int j = 0; j < this->n; j++) { T sum = 0; for (int k = 0; k < this->n; k++) { sum += this->data[i][k] * matrix.data[k][j]; } result.data[i][j] = sum; } } return result; } void printLeftProduct(const Matrix<T> &matrix) const { if (this->n != matrix.m) { throw "Invalid matrix dimensions"; } SquareMatrix result(this->n); for (int i = 0; i < this->n; i++) { for (int j = 0; j < matrix.n; j++) { T sum = 0; for (int k = 0; k < this->n; k++) { sum += this->data[i][k] * matrix.data[k][j]; } cout << sum << "\t"; } cout << endl; } } }; int main() { srand(time(NULL)); Matrix<int> A(5, 6); Matrix<int> B(5, 6); Matrix<int> C(5, 6); for (int i = 0; i < 5; i++) { for (int j = 0; j < 6; j++) { A.data[i][j] = rand() % 10; B.data[i][j] = rand() % 10; C.data[i][j] = rand() % 10; } } cout << "A:" << endl; A.show(); cout << "B:" << endl; B.show(); cout << "C:" << endl; C.show(); cout << "A + B:" << endl; (A + B).show(); cout << "A - C:" << endl; (A - C).show(); SquareMatrix<int> D(4); SquareMatrix<int> E(4); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { D.data[i][j] = rand() % 10; E.data[i][j] = rand() % 10; } } cout << "D:" << endl; D.show(); cout << "E:" << endl; E.show(); cout << "D * E:" << endl; (D * E).show(); cout << "det(D) = " << D.determinant() << endl; cout << "det(E) = " << E.determinant() << endl; try { cout << "D * A:" << endl; D.printLeftProduct(A); } catch (const char *msg) { cerr << msg << endl; } return 0; } ``` 这段代码实现了一个泛型矩阵 `Matrix` 和一个方阵 `SquareMatrix`,其中 `SquareMatrix` 是 `Matrix` 的派生。`Matrix` 实现了矩阵加减法和打印矩阵的功能,`SquareMatrix` 实现了计算行列式和矩阵乘法的功能,并增加了判断矩阵规格是否匹配的检查,以及打印左乘矩阵的功能。主函数中随机生成了两个矩阵和两个方阵,并进行了加减法、乘法和求行列式等操
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值