文章目录
两种模板
1 使用一维的dp数组(这个简单一点)
int n = array.length;
int[] dp = new int[n];
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
dp[i] = 最值(dp[i], dp[j] + ...)
}
}
举个我们写过的例子
最长递增子序列
,在这个思路中dp数组的定义是:
在子数组 array[0…i]中,以nums[i]
结尾的目标子序列(最长递增子序列)的长度是dp[i]
状态转移方程一般很简单,dp[i[] 和之前的dp[i-1] 最多是和之前的每一个dp[j]都发生一种关系
有时候需要一种附加状态
LeetCode42连续数组的最大子序和
LeetCode53 数组种最大子序和
LeetCode152乘机最大的子数组
LeetCode300最长上升子序列
LeetCode673最长上升子序列的个数
LeetCode376摆动序列,这题特殊点需要加上一个标志状态[i][0]或[i][1]
LeetCode646最长对数连
LeetCode368最大整除子集
2、使用一个二维的dp数组
int n = arr.length;
int[][] dp = new dp[n][n];
for (int i = 0; i < n; i++) {
for (int j = 1; j < n; j++) {
if (arr[i] == arr[j])
dp[i][j] = dp[i][j] + ...
else
dp[i][j] = 最值(...)
}
}
这种思路运用相对更多一些,尤其是涉及两个字符串/数组的子序列。本思路中 dp 数组含义又分为「只涉及一个字符串」和「涉及两个字符串」两种情况。
2.1、涉及两个字符串/数组时(比如最长公共子序列)
涉及两个字符串/数组时(比如最长公共子序列),dp 数组的含义如下:
在子数组arr1[0…i]和子数组arr2[0…j]中,我们要求的子序列(最长公共子序列)长度为dp[i][j]。
2.2、只涉及一个字符串/数组时
只涉及一个字符串/数组时(比如本文要讲的最长回文子序列),dp 数组的含义如下:
在子数组array[i…j]中,我们要求的子序列(最长回文子序列)的长度为dp[i][j]。
这种情况下状态转移方程,dp[i][j] 回和
dp[i-1][j-1]
或者dp[i-1][j-1]
,dp[i+1][j-1]
,dp[i+1][j]
这种一定要注意状态的确定方向,有时候画一个矩形就可以很快速的确定状态
LeetCode120 三角形最小路径和
//分许
/**
* 若定义f(i,j)为(i,j)点到底边的最小路径和,则一直递归求解公式为
* f(i,j)= min(f(i+1,j),f(i+1,j+1))+triangle[i][j]
* 我们将任一点到底边的最小路径和,转化成了与该点相邻两点到底边的最小路径和中的较小值,再加上该点本身的值。
*
* dp[i][j]表示点(i,j)到底边的最小路径和
* 状态转移方程:
* dp[i][j]= min(dp[i+1]][j],dp[i+1]{j+1]}+triangle[i][j]
*/
public int minimumTota1l(List<List<Integer>> triangle) {
int n = triangle.size();
// dp[i][j] 表示从点 (i, j) 到底边的最小路径和。
int[][] dp = new int[n + 1][n + 1];
// 从三角形的最后一行开始递推。
for (int i = n - 1; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
dp[i][j] = Math.min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle.get(i).get(j);
}
}
return dp[0][0];
}
LeetCode516最长回文子序列
这个问题对dp数组的定义是:在子串s[i…j]种,最长回文子序列的长度为dp[i][j]
;为啥这个问题要这样定义,说白了就是如何从已经直到的结果推出位置的部分,这样定义容易归纳,容易发现状态专题一关系。
具体来说,如果我们想求
dp[i][j]
,假设你知道了子问题dp[i+1][j-1]
的结果(s[i+1..j-1]
中最长回文子序列的长度),你是否能想办法算出dp[i][j]
的值(s[i…j]中,最长回文子序列的长度)呢
以上两种情况写成代码就是这样
if (s[i] == s[j])
// 它俩一定在最长回文子序列中
dp[i][j] = dp[i + 1][j - 1] + 2;
else
// s[i+1..j] 和 s[i..j-1] 谁的回文子序列更长?
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
注意basecase: dp[i][i]=1
此外还有遍历的方向
至此,最长回文子序列的问题就解决了。
主要还是正确定义 dp 数组的含义,遇到子序列问题,首先想到两种动态规划思路,然后根据实际问题看看哪种思路容易找到状态转移关系。
另外,找到状态转移和 base case 之后,一定要观察 DP table,看看怎么遍历才能保证通过已计算出来的结果解决新的问题
package com.zj.FDynamicProgramming.taolu;
/**
* @Author Zhou Jian
* @Date 2020/8/9
* 最长回文子序列
*/
public class Problem516 {
/**
* 给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
* @param s
* @return
*
*套用子序列的模板:
* dp[i][j] s字符串中 (i,j)的会问序列的长度
*
* dp[i][i]=1 对叫先上的窦唯1
* dp[i][j] = dp[i+1][j-1]+2 (if s[i]==s[j])
* 我们说这个问题对 dp 数组的定义是:在子串s[i..j]中,最长回文子序列的长度为dp[i][j]。一定要记住这个定义才能理解算法。
*
* 为啥这个问题要这样定义二维的 dp 数组呢?我们前文多次提到,找状态转移需要归纳思维,说白了就是如何从已知的结果推出未知的部分,这样定义容易归纳,容易发现状态转移关系。
*
* 具体来说,如果我们想求dp[i][j],假设你知道了子问题dp[i+1][j-1]的结果(s[i+1..j-1]中最长回文子序列的长度),你是否能想办法算出dp[i][j]的值(s[i..j]中,最长回文子序列的长度)呢?
*
* 总体来说,如果我们想求dp[i][j],假设你知道了子问题dp[i+1][j-1]的结果(s[i+1..j-1]中最长回文子序列的长度),
* 你是否能想办法算出dp[i][j]的值(s[i..j]中,最长回文子序列的长度)呢?
* xx [] yy
*/
public int longestPalindromeSubseq(String s) {
if (s==null||s.length()==0) return 0;
if(s.length()==1) return 1;
int[][] dp = new int[s.length()][s.length()];
for(int i=0;i<s.length();i++){
dp[i][i]=1;
}
//这个遍历的方向很和之前的不一样
//这个还是从这个状态转移方程看出
//是一种niaixnag
for(int i=s.length();i>=0;i--){
for(int j=i+1;j<s.length()+1;j++){
// s[i] == s[j]
// dp[i][j]
if(s.charAt(i-1)==s.charAt(j-1)){//相等
dp[i][j] = dp[i+1][j-1]+2; //左下位置
}else{//不相等
// s[i+1..j] 和 s[i..j-1] 谁的回文子序列更长? 左 下
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.length()-1];
}
}
LeetCode5 最长回文子串(注意和回文子序列的对比)
package com.zj.FDynamicProgramming.taolu;
/**
* @Author Zhou Jian
* @Date 2020/8/10
* 最长回文子串
*/
public class Problem5 {
/**
* //这个是子序列的判定
* dp[i][j]字符串中 s[i...j]的回文子串的最大长度
* s[i] == s[j] dp[i][j] = dp[i+1][j-1]+1
* 否则 dp[i][j] = max(dp[i][j-1],dp[i+1][j])
* // 下面的是子串是会问chaun的判定
* dp[i][j]字符串中 s[i...j]的回文子串的最大长度
* * 需要 partion(String s,int i,int j)
* * 否则 dp[i][j] = max(dp[i][j-1],dp[i+1][j])
*
* @param s
* @return
*/
public String longestPalindrome(String s) {
if(s==null||s.length()==0) return null;
if(s.length()==1) return s;
String[][] dp = new String[s.length()][s.length()];
for(int i=0;i<s.length();i++){
for(int j=0;j<s.length();j++)
dp[i][j]="";
}
for(int i=0;i<s.length();i++) dp[i][i] = s.charAt(i)+"";
for(int i=s.length()-1;i>=0;i--){
for(int j = i+1;j<s.length();j++){
// 加上s[i]喝s[j]构成回文子串
// 注意喝子序列的区别
if(partion(s,i,j)){
// System.out.println("s.charAt(i)"+s.charAt(i));
// System.out.println("s.charAt(j)"+s.charAt(j));
dp[i][j] = s.charAt(i)+dp[i+1][j-1]+s.charAt(j);
}else {
if(dp[i][j-1].length()>dp[i+1][j].length()){
dp[i][j]=dp[i][j-1];
}else {
dp[i][j]=dp[i+1][j];
}
}
}
}
return dp[0][s.length()-1];
}
/**
* 判断s[i,,,j]是否为回文穿
* @param s
* @param i
* @param j
* @return
*/
private boolean partion(String s,int i,int j){
int left = i;
int right = j;
while (left<=right){
if(s.charAt(left)!=s.charAt(right)) return false;
left++;
right--;
}
return true;
}
public static void main(String[] args) {
String a = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb";
Problem5 problem5 = new Problem5();
String longestPalindrome = problem5.longestPalindrome(a);
System.out.println(longestPalindrome);
}
}