最小生成树——Prim算法

1 邻接矩阵版

const int maxv=1000;	//最大顶点数
const int inf=1000000000;

//邻接矩阵版
int n,m,g[maxv][maxv];
int d[maxv];	//顶点与集合s的最短距离 
bool vis[maxv]={false};	//标记已访问数组 

int prim1(){	//默认0号为初始点,函数返回最小生成树的边权之和 
	fill(d,d+maxv,inf);
	d[0]=0;	//只有0号顶点到集合s的距离为0,其余全为inf 
	int ans=0;	//存放最小生成树的边权之和 
	for(int i=0;i<n;i++){
		int u=-1,min=inf;
		for(int j=0;j<n;j++){	//找到未访问顶点中d[]最小的 
			if(vis[j]==false&&d[j]<min){
				u=j;
				min=d[j];
			}
		}
		//找不到小于inf的d[u],则剩下的顶点和集合s不连通 
		if(u==-1) return -1;
		vis[u]=true;	//标记u为已访问 
		ans+=d[u];		//将与集合s距离最小的边加入最小生成树 
		for(int v=0;v<n;v++){
			//v未访问&&u能到达v&&以u为中介点可以使v离集合s更近 
			if(vis[v]==false&&g[u][v]!=inf&&g[u][v]<d[v])
				d[v]=g[u][v];
		}
	}
	return ans;	//返回最小生成树的边权之和 
}

2 邻接表版

//邻接表版 
struct Node{
	int v,dis;	//v为边的目标顶点,dis为边权 
};
vector<Node> adj[maxv];

int prim2(){
	fill(d,d+maxv,inf);
	d[0]=0;
	int ans=0;
	for(int i=0;i<n;i++){
		int u=-1,min=inf;
		for(int j=0;j<n;j++){
			if(vis[j]==false&&d[j]<min){
				u=j;
				min=d[j];
			}
		}
		if(u==-1) return -1;
		vis[u]=true;
		ans+=d[u];
		for(int j=0;j<adj[u].size();j++){
			int v=adj[u][j].v;
			if(vis[v]==false&&adj[u][j].dis<d[v])
				d[v]=g[u][v];
		}
	}
	return ans;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值