1 邻接矩阵版
const int maxv=1000; //最大顶点数
const int inf=1000000000;
//邻接矩阵版
int n,m,g[maxv][maxv];
int d[maxv]; //顶点与集合s的最短距离
bool vis[maxv]={false}; //标记已访问数组
int prim1(){ //默认0号为初始点,函数返回最小生成树的边权之和
fill(d,d+maxv,inf);
d[0]=0; //只有0号顶点到集合s的距离为0,其余全为inf
int ans=0; //存放最小生成树的边权之和
for(int i=0;i<n;i++){
int u=-1,min=inf;
for(int j=0;j<n;j++){ //找到未访问顶点中d[]最小的
if(vis[j]==false&&d[j]<min){
u=j;
min=d[j];
}
}
//找不到小于inf的d[u],则剩下的顶点和集合s不连通
if(u==-1) return -1;
vis[u]=true; //标记u为已访问
ans+=d[u]; //将与集合s距离最小的边加入最小生成树
for(int v=0;v<n;v++){
//v未访问&&u能到达v&&以u为中介点可以使v离集合s更近
if(vis[v]==false&&g[u][v]!=inf&&g[u][v]<d[v])
d[v]=g[u][v];
}
}
return ans; //返回最小生成树的边权之和
}
2 邻接表版
//邻接表版
struct Node{
int v,dis; //v为边的目标顶点,dis为边权
};
vector<Node> adj[maxv];
int prim2(){
fill(d,d+maxv,inf);
d[0]=0;
int ans=0;
for(int i=0;i<n;i++){
int u=-1,min=inf;
for(int j=0;j<n;j++){
if(vis[j]==false&&d[j]<min){
u=j;
min=d[j];
}
}
if(u==-1) return -1;
vis[u]=true;
ans+=d[u];
for(int j=0;j<adj[u].size();j++){
int v=adj[u][j].v;
if(vis[v]==false&&adj[u][j].dis<d[v])
d[v]=g[u][v];
}
}
return ans;
}