51nod P1486 大大走格子 \color{green}{\text{51nod\ P1486\ \ \ 大大走格子}} 51nod P1486 大大走格子
【
题
意
】
:
\color{blue}{【题意】:}
【题意】: 现在大大
面前有
n
n
n行
m
m
m列格子,其中
k
k
k个不能走,求从
(
1
,
1
)
(1,1)
(1,1)走到
(
n
,
m
)
(n,m)
(n,m)的方案数。
1
≤
n
,
m
≤
1
×
1
0
5
,
1
≤
k
≤
2
×
1
0
3
1 \leq n,m \leq 1 \times 10^5,1 \leq k \leq 2 \times 10^3
1≤n,m≤1×105,1≤k≤2×103,答案对
1000000007
(
1
×
1
0
9
+
7
)
1000000007(1 \times 10^9+7)
1000000007(1×109+7)取模。
【 思 路 】 : \color{blue}{【思路】:} 【思路】: 如果没有障碍,那么从 ( 1 , 1 ) (1,1) (1,1)走到 ( n , m ) (n,m) (n,m)的方案数即
C n + m − 2 n − 1 C_{n+m-2}^{n-1} Cn+m−2n−1
什么意思呢?它代表我们从 ( 1 , 1 ) (1,1) (1,1)走到 ( n , m ) (n,m) (n,m)需要 n + m − 2 n+m-2 n+m−2步,其中 n − 1 n-1 n−1步是横着走,所以我们可以根据这个算出方案数。
考虑有障碍的时候怎么办?
正难则反。我们考虑容斥。即先把从 ( 1 , 1 ) (1,1) (1,1)走到所有障碍点和 ( n , m ) (n,m) (n,m)的方案数,然后把所有不能走到的方案数减去即可。
【
代
码
】
:
\color{blue}{【代码】:}
【代码】: