2020.02.14日常总结

51nod P1486   大大走格子 \color{green}{\text{51nod\ P1486\ \ \ 大大走格子}} 51nod P1486   大大走格子

【 题 意 】 : \color{blue}{【题意】:} 现在大大面前有 n n n m m m列格子,其中 k k k个不能走,求从 ( 1 , 1 ) (1,1) (1,1)走到 ( n , m ) (n,m) (n,m)的方案数。 1 ≤ n , m ≤ 1 × 1 0 5 , 1 ≤ k ≤ 2 × 1 0 3 1 \leq n,m \leq 1 \times 10^5,1 \leq k \leq 2 \times 10^3 1n,m1×105,1k2×103,答案对 1000000007 ( 1 × 1 0 9 + 7 ) 1000000007(1 \times 10^9+7) 1000000007(1×109+7)取模。

【 思 路 】 : \color{blue}{【思路】:} 如果没有障碍,那么从 ( 1 , 1 ) (1,1) (1,1)走到 ( n , m ) (n,m) (n,m)的方案数即

C n + m − 2 n − 1 C_{n+m-2}^{n-1} Cn+m2n1

什么意思呢?它代表我们从 ( 1 , 1 ) (1,1) (1,1)走到 ( n , m ) (n,m) (n,m)需要 n + m − 2 n+m-2 n+m2步,其中 n − 1 n-1 n1步是横着走,所以我们可以根据这个算出方案数。

考虑有障碍的时候怎么办?

正难则反。我们考虑容斥。即先把从 ( 1 , 1 ) (1,1) (1,1)走到所有障碍点和 ( n , m ) (n,m) (n,m)的方案数,然后把所有不能走到的方案数减去即可。

【 代 码 】 : \color{blue}{【代码】:}
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值