数据结构笔记--二叉树的非递归遍历与按层遍历分析

二叉树的先序、中序、后序递归遍历方式,四行代码,熟悉数据结构、熟悉二叉树的都会。但是当我们遇到一颗相对比较大的树,也就是节点比较多的二叉树时,递归遍历就显得不能得心应手了。那么有没有一种不用递归又能遍历二叉树的方法呢?
答案是肯定的。先序、中序、后序遍历我们要借助栈,按层遍历需要一个队列。在C++中,STL已经为我们提供了这两种结构,重复的代码就不在书写,直接使用STL的stack和queue。我们把重点放在访问的算法上。

下面给出三种非递归遍历的代码:
先序算法分析:对于任一结点P
1)访问结点P,并将结点P入栈;
2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;
3)直到P为NULL并且栈为空,则遍历结束

// 先序非递归遍历二叉树
void PreTravese(BitTree* root)
{
    stack<BitTree*> stackTemp;
    BitTree* p = root;
    while (p || !stackTemp.empty())
    {
        while (p)
        {
            cout << p->m_data << " ";
            stackTemp.push(p);
            p = p->m_lchild;
        }
        p = stackTemp.top();
        stackTemp.pop();
        p = p->m_rchild;
    }
}

中序算法分析:对于任一结点P

1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理

2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子

3)直到P为NULL并且栈为空则遍历结束

// 中序非递归遍历二叉树
void InTravese(BitTree* root)
{
    stack<BitTree*> stackTemp;
    BitTree* p = root;
    while (p || !stackTemp.empty())
    {
        while (p)
        {
            stackTemp.push(p);
            p = p->m_lchild;
        }
        p = stackTemp.top();
        cout << p->m_data << " ";
        stackTemp.pop();
        p = p->m_rchild;
    }
}

后序算法分析:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

// 后序非递归遍历二叉树
void PostTravese(BitTree* root)
{
    BitTree* Flag = NULL; // 保存上一次遍历的节点
    BitTree* p = root;
    stack<BitTree*> stackTemp;
    while (p || !stackTemp.empty())
    {
        while (p)
        {
            stackTemp.push(p);
            p = p->m_lchild;
        }
        if (!stackTemp.empty())
        {
            p = stackTemp.top();
            if (p->m_rchild == NULL || p->m_rchild == Flag)  // 如果栈顶节点右节点为空或被访问
            {
                cout << p->m_data << " ";
                stackTemp.pop();
                Flag = p;
                p = NULL;
            }
            else
            {
                p = p->m_rchild;
            }
        }
    }
}

既然我们已经了解了以上三种遍历方式,那么按层遍历就很好理解了,首先将根节点入队,如果队列不为空,打印队列头,如果出队节点有孩子节点,将孩子节点入队。

// 按层遍历二叉树
void LayOrder(BitTree* root)
{
    if (NULL == root)
    {
        return;
    }
    queue<BitTree*> queueTemp;
    BitTree* p = root;
    queueTemp.push(root);
    while (!queueTemp.empty())
    {
        p = queueTemp.front();
        cout << p->m_data << " ";
        queueTemp.pop();
        if (NULL != p->m_lchild)
        {
            queueTemp.push(p->m_lchild);
        }
        if (NULL != p->m_rchild)
        {
            queueTemp.push(p->m_rchild);
        }
    }
}

努力提高程序可读性与健壮性,能力有限。有错误的地方希望大家提出来,不胜感激。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值