网络流入门术语定理

本文深入探讨了网络流的基本概念,包括容量网络、弧的流量、可行流和最大流。介绍了弧的饱和与非饱和状态,以及增广路的概念。详细阐述了残留容量、残留网络和层次图的构建,同时解释了割的定义和最大流等于最小割的定理。最后,讨论了最大流算法如Dinic和ISAP,并提到了最小费用最大流问题的解决策略。
摘要由CSDN通过智能技术生成
容量网络:

设G(V,E),是一个有向网络,在V中指定了一个顶点,称为源点(记为Vs),以及另一个顶点,称为汇点(记为Vt);对于每一条弧

弧的流量:

通过容量网络G中每条弧

网络流:

所有弧上流量的集合f={f(u,v)},称为该容量网络的一个网络流.

可行流:

在容量网络G中满足以下条件的网络流f,称为可行流.
A: 弧流量限制条件: 0<=f(u,v)<=c(u,v);
B: 平衡条件:即流入一个点的流量要等于流出这个点的流量,(源点和汇点除外).

最大流:

在容量网络中,满足弧流量限制条件,且满足平衡条件并且具有最大流量的可行流,称为网络最大流,简称最大流.

弧的类型:

a. 饱和弧: 即f(u,v)=c(u,v);
b. 非饱和弧: 即f(u,v)

增广路:

设f是一个容量网络G中的一个可行流,P是从Vs到Vt 的一条链,若P满足以下条件:
a. P中所有前向弧都是非饱和弧,
b. P中所有后向弧都是非零弧.
则称P为关于可行流f 的一条增广路。沿这增广路改进可行流的操作称为增广.

残留容量:

给定容量网络G(V,E),及可行流f, 弧 (u,v)上的残留容量记为cl(u,v)=c(u,v)-f(u,v).每条弧上的残留容量表示这条弧上可以增加的流量.因为从顶点u到顶点v的流量减少,等效与从顶点v到顶点u的流量增加,所以每条弧(u,v)上还有一个反方向的残留容量l(v,u)=-f(u,v)。

残留网络:

设有容量网络G(V,E)及其上的网络流f,G关于f的残留网络记为G(V’,E’).其中G’的顶点集V’和G中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值