容量网络:
设G(V,E),是一个有向网络,在V中指定了一个顶点,称为源点(记为Vs),以及另一个顶点,称为汇点(记为Vt);对于每一条弧
弧的流量:
通过容量网络G中每条弧
网络流:
所有弧上流量的集合f={f(u,v)},称为该容量网络的一个网络流.
可行流:
在容量网络G中满足以下条件的网络流f,称为可行流.
A: 弧流量限制条件: 0<=f(u,v)<=c(u,v);
B: 平衡条件:即流入一个点的流量要等于流出这个点的流量,(源点和汇点除外).
最大流:
在容量网络中,满足弧流量限制条件,且满足平衡条件并且具有最大流量的可行流,称为网络最大流,简称最大流.
弧的类型:
a. 饱和弧: 即f(u,v)=c(u,v);
b. 非饱和弧: 即f(u,v)
增广路:
设f是一个容量网络G中的一个可行流,P是从Vs到Vt 的一条链,若P满足以下条件:
a. P中所有前向弧都是非饱和弧,
b. P中所有后向弧都是非零弧.
则称P为关于可行流f 的一条增广路。沿这增广路改进可行流的操作称为增广.
残留容量:
给定容量网络G(V,E),及可行流f, 弧 (u,v)上的残留容量记为cl(u,v)=c(u,v)-f(u,v).每条弧上的残留容量表示这条弧上可以增加的流量.因为从顶点u到顶点v的流量减少,等效与从顶点v到顶点u的流量增加,所以每条弧(u,v)上还有一个反方向的残留容量l(v,u)=-f(u,v)。
残留网络:
设有容量网络G(V,E)及其上的网络流f,G关于f的残留网络记为G(V’,E’).其中G’的顶点集V’和G中