P1219 八皇后
题目描述
一个如下的 6 \times 66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5 来描述,第 ii 个数字表示在第 ii 行的相应位置有一个棋子,如下:
行号 1\ 2\ 3\ 4\ 5\ 61 2 3 4 5 6
列号 2\ 4\ 6\ 1\ 3\ 52 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。
输入格式
一行一个正整数 nn,表示棋盘是 n \times nn×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入样例
6
输出样例
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
题解
import java.util.Scanner;
public class P1219 {
public static int total = 0;//统计有效解数量
public static int[] a = new int[100];//解
public static boolean[] b = new boolean[100];//记录位置是否被占用
public static boolean[] c = new boolean[100];//记录对角线是否被占用
public static boolean[] d = new boolean[100];//记录斜线是否被占用
public static int n;
public static void print() {
if(total < 3) {//输出前三个解
for(int i=1;i<=n;i++) {
System.out.print(a[i] + " ");
}
System.out.println();
}
total++;
}
public static void queen(int i) {
// 当i>n时可以输出
if(i>n) {
print();
return;
}
else {
for(int j=1;j<=n;j++) {
if(!b[j] && !c[i+j] && !d[i-j+n]) {//判断该位置是否被占用
a[i] = j;
b[j] = true;
c[i+j] = true;
d[i-j+n] = true;
queen(i+1);
// 清空该位置的占用
b[j] = false;
c[i+j] = false;
d[i-j+n] = false;
}
}
}
}
public static void main(String[] args) {
// TODO 自动生成的方法存根
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
queen(1);
System.out.print(total);
scanner.close();
}
}
总结
因为报了一个比赛,所以现在才想到来学习算法,因为报的JAVA组,所以全部使用JAVA来打的题。八皇后是深度优先搜索里面的经典题,但是我始终找不到思路,于是看了洛谷里面大佬的题解,终于理解了一下。首先这道题的目的是求前三个解并求解的数目,而且解按字典顺序排列。其次里面有限制每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子,这个就是我们进行深搜的关键条件了。
这个棋盘实际上是一个二维数组n*m,算法的思路就是从第一行的第一列开始,判断该点是否符合条件,若符合则将该点列号存进结果数组并进入第下一行,若不符合进入第下一列。一旦该行没有符合的点时,往上一行回溯。当每次到达n+1行时,则表示找到了一个解。
与树的深度搜索是一样的,只不过每个节点的值要符合判断条件而已。