剑指offer(六十四)——滑动窗口的最大值

剑指offer(六十四)——滑动窗口的最大值

题目描述
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

题解
该题的解题思路是使用双端队列,队列存储元素的下标,并且队头元素始终是队列中最大的元素的下标。即该队列有两个限制条件:一是队头保持为队列中最大元素的下标,二是队列中的元素要保持有效(即在滑动窗口大小范围内)。那么如何实现这个队列,图解如下:

  • num数组如下:
    在这里插入图片描述
  • 第一个元素入队(这里用两个队列来表示,一个是元素值队列,另一个是元素下标队列,实际我们只需用到元素下标队列):
  • 当队列为空时直接入队就可以了,不需要其他判断
  • 入队时需要进行判断队头元素下标是否在窗口内,如果不在窗口内则需将队头元素出队,此时队头元素下标为0,而窗口大小为3,此时遍历的是第一个元素,自然在窗口内。
    在这里插入图片描述
  • 第二个元素入队,因为我们只需要最大值,所以将比该元素小的都出队,然后让该元素入队,同样检查队头是否在窗口内。
    在这里插入图片描述
  • 第三个元素入队,此时窗口内元素已经达到三个,需要记录窗口的最大值,即队头元素num[2] = 4。
    在这里插入图片描述
  • 第四个元素入队,因为没有比该元素更小的元素,所以直接入队。
    在这里插入图片描述
  • 重复这个过程,后面每一次的队头元素都是该滑动窗口的最大值。
    在这里插入图片描述
public ArrayList<Integer> maxInWindows(int [] num, int size)
    {
		ArrayList<Integer> ans = new ArrayList<>();
		if (size == 0 || num.length < size) {
			return ans;
		}
//		记录数组元素的位置
		Deque<Integer> dq = new ArrayDeque<>();
		//遍历数组
		for(int i = 0; i < num.length; i++) {
			//队列为空则直接入队
			//判断队头元素是否在窗口中,如果不是则出队
			if (dq.isEmpty()) {
				dq.add(i);
			}else if (dq.peekFirst() < i - size + 1) {
				dq.pollFirst();
			}
			//将比入队元素小的队列元素出队
			while(!dq.isEmpty() && num[dq.peekLast()] <= num[i]) {
				dq.pollLast();
			}
			//入队
			dq.add(i);
			//当到达窗口大小时,记录窗口最大值
			if (i-size+1 >= 0) {
				ans.add(num[dq.peekFirst()]);
			}
		}
		return ans;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值