近年来,聊天机器人的发展非常迅速,有大量的产品已经进入我们的视野中,算是人工智能技术落地比较热门的产品之一,接下来分享一下我对聊天机器人的一点点认识。
一.聊天机器人的分类
从解决用户需求层面来看,聊天机器人可以分为两类:
服务型聊天机器人和娱乐型聊天机器人。
服务型机器人是以解决问题为导向,为用户提供服务或事实性的知识。
娱乐型机器人的主要目的就是和用户尽可能地聊下去,与用户的聊天回合数越多越好,让用户对机器人产生依赖感。
根据具体的应用,可以简单分为三类:
1.个人助手:
帮助用户完成订票、打车、订餐、订花、天气查询、订阅、日程提醒等任务,它就像一个助手,帮助你完成任务,提高你的工作效率或生活质量,常见的聊天机器人有:Siri、小娜、Google now和 亚马逊的Alexa。
2.智能客服:
这类的聊天机器人主要是与用户进行沟通,为用户解答产品或服务相关的问题,旨在解决用户的同时,减少企业的成本,提高客服的服务质量与效率。
客服人员与客服机器人常见的协作模式是“智能客服+人工客服”:客服机器人回答用户常见、高频、简单、可模板化的问题,解决用户部分需求,如果解决不了或用户有更多特殊或个性化的需求,再转接人工服务。
这样可以减少人工成本,同时能够做到快速地回应用户,也为客服人员节省时间,有更多的精力处理特殊情况,从而提高服务质量。
常见的聊天机器人有网易七鱼、京东jimi等。目前运用比较广泛的是在电商的售前售后服务上,不过现在也越来越多的互联网产品会内嵌一个聊天机器人,其定位基本都是客服机器人,旨在更好地为用户提供服务或帮助用户熟悉使用产品,我相信以后服务型的产品内带一个客服机器人是一个标配。
3.知识问答:
为用户提供事实性的知识,辅助用户进行决策。事实性的知识可以分为两种:
一种是通用型知识,此类知识是客观存在的事实,比如地球是不是圆的?光速是多少?等
另一种是领域型知识,比如医疗知识问答、法律知识问答、娱乐明星问答、游戏知识问答等。
而娱乐型机器人是以满足用户情感需求为导向,提供一系列闲聊服务,做用户的情感伴侣。一般此类聊天机器人都有自己的人设(性别,年龄,生日,性格等),像微软的小冰,形象就是一位调皮可爱的19岁少女。
二.聊天机器人常见的交互方式
目前常见的交互方式有三种:文字交互,语音交互和图片交互。
目前比较常用的交互是文字交互,即用户需要手动输入内容与聊天机器人进行交谈。
不过随着语音识别与语音合成技术的逐渐成熟,语音交互也越来越频繁地被运用于聊天机器人。
语音交互与文字交互相比,前者的好处在于它解放了人们的双手,用户能更快地输入,而且语音交互更加有趣、真实,我相信语音交互是未来聊天机器人的发展趋势。
图片交互一般在娱乐型机器人会运用的比较多,如斗图、颜值打分,物品识别,为图配字,为图配诗等。
三.聊天机器人背后的技术
我觉得聊天机器人的技术可以简单分为两个部分:
用户意图识别 和 对话系统。
用户意图识别所用到的主要技术是自然语言处理,目的是让机器人理解用户的意图,理解用户想问什么问题等。
而对话系统的实现主要有两种方式:信息检索和基于深度学习的语言生成模型
1.信息检索,我们预先准备知识,通过检索技术将用户想问的知识匹配给用户。
知识可分结构化的知识和非结构化的知识,常见的结构化知识是QA知识(一问一答),而非结构化的知识是指没有经过处理的原始数据,一般需要通过自动摘要获得知识。
目前存在难点:
(1)如何快速地构建知识库,目前常见的做法是人工一条条创建知识。要获得一个涵盖全面、高质量的知识库需要非常大的成本;
(2)无法很好地判断是否把知识的答案匹配给用户。问答机器人要做好两点:
如果用户问的问题,我们知识库有相应的知识,我们需要做到把这条知识匹配给用户;
如果用户问的问题,我们知识库没有相应的知识,那么需要告知用户,没有相应的知识。
第一点,目前的技术可以较好地满足,但对于第二点,目前并没有很好的方法来区分是否匹配,常规做法是设定一个匹配阈值,当高于匹配阈值时,我们默认为知识库中有相应的知识,把得分最高的候选知识匹配给用户;
当低于匹配阈值时,我们认为没有相应知识,常见做法是回复一个通用回答。
该阈值的设定比较主观,而且没有横向可比性。如果阈值设置地过高,那么会有很多本应该被匹配的知识没有被匹配上;
如果阈值设置地过低,就会有本不应该被匹配的知识被匹配上了,这两者都会影响用户的体验。
2.基于深度学习的语言生成模型:即提供大量的数据给模型学习,从而获得对话的能力。
听小冰团队介绍,小冰运用了此技术,也不知道是不是真的。该技术存在难点:
(1)需要大量、高质量的数据
(2)输出结果不可控,输出的结果能让用户满意而且符合机器人的人设,个人感觉非常难
四.聊天机器人注意事项
1. 服务型机器人,它是以解决问题至上、效率至上的,用户与机器人的聊天回合数越少越好。
虽然与它闲聊时,会显得很笨,但是它的定位就是这样,背后有相应的应用场景支撑,要专注于应用场景,把服务做好。在服务没有做好的情况不要而提供一些基础闲聊,这样只会让它在用户心中的影响更加模糊。现在很多服务型机器人都是基于信息检索技术,都会有创建自己的知识库,在此,有以下几点需要注意的地方:
(1)创建知识时,要考虑用户语言习惯。一条知识一个问题,不要把多个问题编辑成一条知识。
用户很懒,不会按照我们设想的那样输入,可以根据分析用户输入,比如:用户输入特点(口语化)、平均输入字符数等指标来设计我们的知识;
(2)创建知识时,要建立知识规范,方便后期维护,同时也要考虑知识的时效性。
2.娱乐型机器人
如果要做娱乐型机器人,有以下几点值得注意:
(1)定位要明确,要有自己的产品特色。
我们做一个闲聊机器人,但闲聊话题范围非常大,覆盖全部闲聊难度非常大,可以专注于某个话题,比如我们专注于做用户的情感倾诉伴侣,也可以专注于某个人群:比如做老人的陪伴机器人,做小孩子的成长陪伴机器人等
(2)像“人”。
既然是一个情感伴侣,那么机器人要让用户觉得它是一个“人”,而不是“机器人”。
首先,要认识,机器人与用户的地位是平等的,不能跪舔用户;
机器人的回复要多样性,否则固定的回复会让用户感觉它是个机器人,从而不愿意投入情感;
回复内容最好能调动用户的情绪,引起话题,而不是对用户问题的简单回复;
主动,偶尔主动地引导话题,而不是被动式的聊天;
更高级的有:根据用户的情绪回复不同的内容或实现带上下文的聊天
(3)个性化。
用户希望这个机器人是属于自己的,或者和自己是有联系的。
可以通过设置一些小技巧让用户觉得它是记得用户的。
比如给用户打标签、起外号;
记录用户的基本信息;
记录机器人与用户聊过的某些话题;
或者基于LBS与用户互动,比如用户的位置在图书馆,那么机器人可以找用户聊“你在图书馆看书啊,看来你是一个好学生”之类的。
作者:在产品汪的路上
链接:https://www.jianshu.com/p/289ad56d9479
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。