deeponet网络根据积分算子案例抽象出来的输入输出(重要):
input_branch = (dataset_size,m) =(150,可任意这里为100)
input_trunk = (,dimension) = (100,根据数据维度这里为1)
output = (dataset_size,) = (150,100)
解析
- 案例是为了从v函数映射到u,学习G这个积分算子 。
- dataset_size是数据的个数,m是是表示输入函数v的离散点的个数,
是表示输出函数u的点的数目。
模型opnn(也就是operator NN神经算子)的输入输出
X_train:list中有2个 (1000=num_train,100=m)和(1000,1)两个ndarray元素
y_train:ndarray(1000=num_train,1)
X_test:list中有2个 (100=num_test,100=m)和(100=num_test,1)两个ndarray元素
y_test:ndarray(100=num_test,1)
tips:实际测试集是y_test_trim,不是y_test,但是两者shape一样,只是经过
y_test_trim = trim_to_65535(y_test)[0]函数转化
分析数据代码
m = 100
num_train = 1000#10000
num_test = 100#100000
space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
X_train, y_train = system.gen_operator_data(space, m, num_train)
X_test, y_test = system.gen_operator_data(space, m, num_test)
其中
space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
space
是一个通过GRF
(高斯随机场)类生成的对象。GRF
是一个实现了生成高斯随机场的类。我们可以分析一下它的构造函数参数:1
可能表示高斯随机场的维度(即一维空间),这意味着生成的是一维的高斯随机场。length_scale=0.2
控制高斯随机场的平滑性,长度尺度越小,数据的变化越快;长度尺度越大,数据的变化越平滑。N=1000
设置了高斯随机场中的点数或空间的离散化程度。更大的N
可能意味着生成的空间将包含更多的样本点。interp="cubic"
设置插值方法为三次插值,这通常用于对高斯随机场进行平滑处理,保证数据点之间的平滑过渡。
-
system.gen_operator_data()
是一个用于生成训练数据的方法,具体作用可能是基于高斯随机场space
和其他参数生成训练数据。
总结
-
生成高斯随机场(GRF):
space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
这行代码生成了一个一维高斯随机场,使用长度尺度为 0.2 的平滑度、1000 个离散点,并采用三次插值。
-
生成训练和测试数据:
- 通过
system.gen_operator_data(space, m, num_train)
和system.gen_operator_data(space, m, num_test)
生成了训练集和测试集的数据:
- 通过
-
变量的意义:
m = 100
可能表示每个数据样本的特征维度。num_train = 1000
表示训练数据集的大小,num_test = 100
表示测试数据集的大小。
这段代码的目的是通过高斯随机场(GRF,这个是Deeponet论文中提到的生成数据时的函数空间)生成数据,并用这些数据来训练和评估模型。通过调整 num_train
和 num_test
的大小,可以控制训练和测试数据集的规模,而通过 m
可以控制数据的维度。