deeponet中deeponet_pde.py案例分析以及输入输出

deeponet网络根据积分算子案例抽象出来的输入输出(重要):

input_branch = (dataset_size,m)   =(150,可任意这里为100)

input_trunk = (N_{u},dimension)  = (100,根据数据维度这里为1)

output = (dataset_size,N_{u}) = (150,100)

解析

  1. 案例是为了从v函数映射到u,学习G这个积分算子 。
  2. dataset_size是数据的个数,m是是表示输入函数v的离散点的个数,N_{u}是表示输出函数u的点的数目。

模型opnn(也就是operator NN神经算子)的输入输出

X_train:list中有2个  (1000=num_train,100=m)和(1000,1)两个ndarray元素 

y_train:ndarray(1000=num_train,1)

X_test:list中有2个  (100=num_test,100=m)和(100=num_test,1)两个ndarray元素 

y_test:ndarray(100=num_test,1)

tips:实际测试集是y_test_trim,不是y_test,但是两者shape一样,只是经过

y_test_trim = trim_to_65535(y_test)[0]函数转化

分析数据代码

    m = 100
    num_train = 1000#10000
    num_test = 100#100000
    space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
    X_train, y_train = system.gen_operator_data(space, m, num_train)
    X_test, y_test = system.gen_operator_data(space, m, num_test)

其中

space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
  • space 是一个通过 GRF(高斯随机场)类生成的对象。GRF 是一个实现了生成高斯随机场的类。我们可以分析一下它的构造函数参数:
    • 1 可能表示高斯随机场的维度(即一维空间),这意味着生成的是一维的高斯随机场。
    • length_scale=0.2 控制高斯随机场的平滑性,长度尺度越小,数据的变化越快;长度尺度越大,数据的变化越平滑。
    • N=1000 设置了高斯随机场中的点数或空间的离散化程度。更大的 N 可能意味着生成的空间将包含更多的样本点。
    • interp="cubic" 设置插值方法为三次插值,这通常用于对高斯随机场进行平滑处理,保证数据点之间的平滑过渡。
  • system.gen_operator_data() 是一个用于生成训练数据的方法,具体作用可能是基于高斯随机场 space 和其他参数生成训练数据。

总结

  1. 生成高斯随机场(GRF)

    • space = GRF(1, length_scale=0.2, N=1000, interp="cubic") 这行代码生成了一个一维高斯随机场,使用长度尺度为 0.2 的平滑度、1000 个离散点,并采用三次插值。
  2. 生成训练和测试数据

    • 通过 system.gen_operator_data(space, m, num_train) 和 system.gen_operator_data(space, m, num_test) 生成了训练集和测试集的数据:
  3. 变量的意义

    • m = 100 可能表示每个数据样本的特征维度。
    • num_train = 1000 表示训练数据集的大小,num_test = 100 表示测试数据集的大小。

这段代码的目的是通过高斯随机场(GRF,这个是Deeponet论文中提到的生成数据时的函数空间)生成数据,并用这些数据来训练和评估模型。通过调整 num_trainnum_test 的大小,可以控制训练和测试数据集的规模,而通过 m 可以控制数据的维度。

DeepOnet是一种基于TensorFlow实现的深度神经网络算法。它主要是用于图像处理和计算机视觉应用中的目标检测和分类任务。 DeepOnet代码主要包括以下几个部分: 1. 数据预处理:首先需要对输入数据进行预处理,包括图像归一化、尺寸调整和标签处理等。这个步骤可以使用TensorFlow中的图像处理函数和数据集处理函数来完成。 2. 搭建网络模型:通过使用TensorFlow的高阶API或者自定义网络结构,可以搭建深度神经网络模型。深度神经网络通常由多个卷积层、池化层、全连接层和激活函数组成。 3. 指定损失函数:在目标检测和分类任务中,通常使用交叉熵损失函数来衡量模型预测结果与真实标签之间的差距。TensorFlow提供了丰富的损失函数,可以根据具体任务选择合适的损失函数。 4. 选择优化器:为了使模型能够更好地学习和拟合数据,需要选择适当的优化器进行参数更新。TensorFlow提供了各种常用的优化器,如随机梯度下降(SGD)、动量优化器(Momentum)、自适应矩估计优化器(Adam)等。 5. 训练和评估模型:利用训练数据对模型进行训练,并使用测试数据对模型进行评估。可以根据需要设置训练轮数、批次大小和学习率等超参数,通过迭代更新模型参数来训练模型。 6. 预测和应用:通过加载训练好的模型,可以对新的数据进行预测和应用。可以使用模型的预测结果进行目标检测或分类等任务。 总之,DeepOnet是一个基于TensorFlow的深度神经网络算法,通过数据预处理、网络模型搭建、指定损失函数、选择优化器以及训练和评估模型等步骤来实现目标检测和分类任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热爱生活的五柒

谢谢你的打赏,人好心善的朋友!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值