热电联产系统智能经济调度:一种深度强化学习方法
关键词:热电联产,经济调度,深度强化学习,近端优化
一种热电组合(CHP)系统经济调度的深度强化学习(DRL)方法,该方法具有对不同操作场景的适应性,显著地在不影响精度的情况下降低了计算复杂度。
在问题描述方面,大量的热与功率组合(CHP)经济调度问题被建模为一个高维和非光滑的目标函数,具有大量的非线性约束,需要强大的优化算法和相当长的时间来解决它。
为了减少解决方案的时间,大多数工程应用程序选择线性化优化目标和设备模型。
为了避免复杂的线性化过程,本文将CHP经济调度问题建模为马尔可夫决策过程(MDP),使模型被高度封装,以保存各种设备的输入和输出特性。
此外改进了一种先进的深度强化学习算法:分布式近端策略优化(DPPO),使其适用于CHP经济调度问题。
此外,我们还改进了一种先进的深度强化学习算法:分布式近端策略优化(DPPO),使其适用于CHP经济调度问题。
在此算法的基础上,将对代理进行训练,以探索不同操作场景的最优调度策略,并有效地响应系统紧急情况。
在实用阶段,经过训练的代理将根据当前系统状态实时生成最优控制策略。
ID:96100645722178965
DannyT7程序设计