2023.08.14
为了解决西瓜白壤,白皮的问题,尝试使用openmmlab框架进行解决
使用MMsegmentaion训练预训练的模型,对街景和图片做预测
使用语义分割复现经典算法,并复现相关的代码
使用新训练的模型部署到NCNN中,
同时了解到子豪兄的做到的一些工作
以及openMMlab(官网)自己学到的太少
Segmentation主要是基于即插即用的算法和模型
具有运行速度快,能使用于多种算法的功能
视频:
总结目前用的深度框架:
MMlab用到的
目标检测的使用
MMYolo的检测
MMocr的使用进行文字信息的提取
MMLab3D进行目标检测算法
MMsegmenmtation语义分割模型
分割任务的本质是对图像中的每个像素 pixel 做分类,可以细分为语义分割、实例分割和全景分割,它们之间的不同如下图所示:
- 语义分割是给图像中的每个像素分配一个类别,得到特定类别的 mask;
- 实例分割是对特定的物体进行分类,与目标检测输出物体的边界框和类别不同,实例分割输出的是特定物体的 mask 和类别;
- 全景分割是语义分割和实例分割的结合,对于可数的对象实例 things 如行人、汽车去做实例分割,对于不可数的语义区域 stuff 如天空、地面做语义分割。
目前,MMSegmentation 支持的分割任务为语义分割 ,MMDetection 中支持了实例分割和全景分割。
自动驾驶
图像是自动驾驶中非常重要的数据来源,因为摄像头的成本低于激光雷达,而且相较于点云数据,直观的图像更符合人眼的视觉感受。通过语义分割模型,识别出图像中的特定类别,例如:车道线、车辆和行人,可以辅助自动驾驶系统理解场景,做出决策。目前 MMSegmentation 支持的城市街景数据集 Cityscapes,车道线检测模型 ERFNet,实时语义分割模型 BiSeNet 等都和此相关。