Datawhale[开源学习](MMsegmentation使用)

2023.08.14

为了解决西瓜白壤,白皮的问题,尝试使用openmmlab框架进行解决

使用MMsegmentaion训练预训练的模型,对街景和图片做预测

使用语义分割复现经典算法,并复现相关的代码

使用新训练的模型部署到NCNN中,

同时了解到子豪兄的做到的一些工作

以及openMMlab(官网)自己学到的太少

Segmentation主要是基于即插即用的算法和模型

具有运行速度快,能使用于多种算法的功能

视频:

总结目前用的深度框架:

MMlab用到的

 

 

目标检测的使用

MMYolo的检测

 

MMocr的使用进行文字信息的提取

MMLab3D进行目标检测算法

 

MMsegmenmtation语义分割模型

 

 

 

分割任务的本质是对图像中的每个像素 pixel 做分类,可以细分为语义分割、实例分割和全景分割,它们之间的不同如下图所示: 

  • 语义分割是给图像中的每个像素分配一个类别,得到特定类别的 mask;
  • 实例分割是对特定的物体进行分类,与目标检测输出物体的边界框和类别不同,实例分割输出的是特定物体的 mask 和类别;
  • 全景分割是语义分割和实例分割的结合,对于可数的对象实例 things 如行人、汽车去做实例分割,对于不可数的语义区域 stuff 如天空、地面做语义分割。

目前,MMSegmentation 支持的分割任务为语义分割 ,MMDetection 中支持了实例分割和全景分割。

自动驾驶

图像是自动驾驶中非常重要的数据来源,因为摄像头的成本低于激光雷达,而且相较于点云数据,直观的图像更符合人眼的视觉感受。通过语义分割模型,识别出图像中的特定类别,例如:车道线、车辆和行人,可以辅助自动驾驶系统理解场景,做出决策。目前 MMSegmentation 支持的城市街景数据集 Cityscapes,车道线检测模型 ERFNet,实时语义分割模型 BiSeNet 等都和此相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值