八大算法思想



下面介绍一下最常用的八大算法思想

一、比较“笨”的枚举算法

         基本思路:

                   1、确定枚举对象、枚举范围和判定条件
                   2、注意枚举可能的解,验证每个节是否是问题的解

         枚举算法步骤:

                   1、题解的可能范围,补能遗漏任何一个真正解,也要避免有重复

                   2、判断是否真正解的方法

                   3、使可能解的范围降至最小,以便提高解决问题的效率

#include <stdio.h>

int main()
{
	int x,y,z;
	for(x=0;x<=20;x++)
	{
		for(y=0;y<=33;y++)
		{
			z=100-x-y;
			if(z%3==0 && x*5+y*3+z/3==100)
			{
				printf("公鸡:%d,母鸡:%d,小鸡:%d\n",x,y,z);
			}
		}
	}
	return 0;
}



二、递推算法思想

         1、顺推法:从已知条件出发,逐步推算出要解决问题的方法。(斐波那契数列)

#include <iostream>
#include <vector>

using namespace std;
void get_tuzi(int mouth);
int main()
{
	int x,y,z;
	int mouth;
	cin>>mouth;
	get_tuzi(mouth);	
	return 0;
}

void get_tuzi(int mouth)
{
	vector<int> n(mouth);
	n[0]=0;
	n[1]=1;
	for(int i=2;i<mouth+1;i++)
	{
		n[i]=n[i-1]+n[i-2];
	}
	cout<<n[mouth]<<endl;
}


         2、逆推法:从已知结果出发,用迭代表达式逐步推算出要解决问题开始的条件,即顺推法的逆过程。

#include <stdio.h>

#define FETCH 1000
#define RATE  0.0171

int main()
{
	double corpus[49];
	int i;
	corpus[48]=(double)FETCH;
	for(i=47;i>0;i--)
	{
		corpus[i]=(corpus[i+1])/(1+RATE/12)+FETCH;
	}
	printf("%.2f",corpus[47]);
}


三、递归算法思想

         特点:

                   1、递归过程一般通过函数或子过程来实现。

                   2、递归算法在函数或子过程的内部,直接或者间接地调用自己的算法。、

                   3、递归算法实际上是把问题转化为规模缩小了的同类问题的子问题,然后在递归调用函数或者子过程来表示问题的解。

         注意以下几点:

                   1、递归式在过程或函数中调用自身的过程。

                   2、在使用递归时,必须有一个明确的递归结束条件,称为递归出口

                   3、递归算法通常显得很简洁,但是运行效率低,一般不提倡

                   4、在递归调用过程中,系统用栈来存储每一层的返回点和局部量,如果次数过多。容易溢出,一般不提倡使用。

                   (汉诺塔问题、阶乘问题)

#include <iostream>

using namespace std;
void hannuo(int n,char a,char b,char c);
int main()
{
	int n;
	cin>>n;
	hannuo(n,'A','B','C');
	return 0;
}

void hannuo(int n,char a,char b,char c)
{
	if(n==1)
		cout<<a<<"-->"<<c<<endl;
	else
	{
	hannuo(n-1,a,c,b);
	cout<<a<<"-->"<<c<<endl;
	hannuo(n-1,b,a,c);	
	}
}

阶乘:

#include <iostream>

using namespace std;
int jiecheng(int n);
int main()
{
	cout<<jiecheng(2)<<endl;
	return 0;
}

int jiecheng(int n)
{
	if(n==0) return 1;
	else 
	{
		return (jiecheng(n-1)*n);
	}
}


四、分治算法思想

         1、分解,将要解决的问题划分成若干个规模较小的同类问题;

         2、求解,当子问题化分足够小时,用较简单的方法解决;

         3、合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

                     (大数相乘、比赛日程安排)

#include <stdio.h>
#include <malloc.h>
#include <string.h>

void mult(char a[],char b[],char s[]);

void main()
{
	char *a="123",*b="456";
	char *s=(char *)malloc(sizeof(char)*8);
	mult(a,b,s);
	printf("%s\n",s);
}


void mult(char a[],char b[],char s[])
{
	int i,j,k=0,alen,blen,sum=0,res[65][65]={0},flag=0;
	char result[65];
	alen=strlen(a);
	blen=strlen(b);
	for (i=0;i<alen;i++)
		for (j=0;j<blen;j++) 
			res[i][j]=(a[i]-'0')*(b[j]-'0');
	for (i=alen-1;i>=0;i--)
	{
		for (j=blen-1;j>=0;j--)
			sum=sum+res[i+blen-j-1][j];
		result[k]=sum%10;
		k=k+1;
		sum=sum/10;
		printf("%d\n",result[k-1]);
	}
	for (i=blen-2;i>=0;i--)
	{
		for (j=0;j<=i;j++) 
			sum=sum+res[i-j][j];
		result[k]=sum%10;
		k=k+1;
		sum=sum/10;
		printf("%d\n",result[k-1]);
	}
	if (sum!=0) {result[k]=sum;k=k+1;}
	for (i=0;i<k;i++) result[i]+='0';
	for (i=k-1;i>=0;i--) s[i]=result[k-1-i];
	s[k]='\0';
	while(1)
	{
		if (strlen(s)!=strlen(a)&&s[0]=='0')
			strcpy(s,s+1);
		else
			break;
	}
}

#include <iostream>
#include <iomanip>

using namespace std;
int a[65][65]={0};
void gamecal(int k,int n);
int main()
{
	int n,i,j=2;
	cin>>n;
	if(n<=2||n>64) return 0;
	while(n!=j)
	{
		j=j*2;
		if(j>64) return 0;
	}
	gamecal(1,n);
	cout<<left;
	cout<<setw(5)<<"编号";
	cout<<right;
	for(j=2;j<=n;j++)
		cout<<setw(5)<<j-1<<"天";
	cout<<endl;
	for(i=1;i<=n;i++)
	{	cout<<left;
		for(j=1;j<=n;j++)
			cout<<setw(8)<<a[i][j];
		cout<<endl;
	}
	return 0;
}

void gamecal(int k,int n)
{
	int i,j;
	if(n==2)
	{
		a[k][1]=k;
		a[k][2]=k+1;
		a[k+1][1]=k+1;
		a[k+1][2]=k;
	}
	else
	{
		gamecal(k,n/2);
		gamecal(k+n/2,n/2);
		for(i=k;i<k+n/2;i++)
			for(j=n/2+1;j<=n;j++)
				a[i][j]=a[i+n/2][j-n/2];
		for(i=k+n/2;i<k+n;i++)
			for(j=n/2+1;j<=n;j++)
				a[i][j]=a[i-n/2][j-n/2];
	}
}


五、贪心算法思想

         从问题的某一个初始解出发,逐步逼近给定的目标,一遍尽快求出更好的解。当达到算法中的某一部不能再继续前进时,就停止算法,给出一个近似解

         存在的问题

                   1、不能保证最后的结果是最优的

                   2、不能用来求最大或最小解的问题

                   3、只能求满足某些约束条件的可行解的范围

         基本思路

                   1、建立数学模型来描述问题

                   2、把求解的问题分成若干个子问题

                   3、把子问题的局部最优解合并成原来界问题的一个解

         基本过程

                   1、从问题的某一初始解出发

                   2、while能向给定总目标前进一步

                   3、求出可行解的一个解元素

                   4、由所有解元素组合成问题的一个可行解。

贪心之钱找零

#include <iostream>
#include <iomanip>

using namespace std;

#define MAXN 9

int parvalue[MAXN]={10000,5000,2000,1000,500,100,50,20,10};
int num[MAXN]={0};

void exchange(int n)
{
	int i,j;
	for(i=0;i<MAXN;i++)
		if(n>parvalue[i]) break;
	i--;
	while(n>0 && i<MAXN)
	{
		if(n>=parvalue[i])
		{
			cout<<"sdsd"<<endl;
			n=n-parvalue[i];
			num[i]++;
		}
		else if(n<11 && n>=5) 
		{
			num[MAXN-1]++;
			break;
		}
		else i++;
	}
}

int main()
{
	int i;
	float m;
	cin>>m;	
	exchange((int)(100*m));
	for(i=0;i<MAXN;i++)
	{
		cout<<setiosflags(ios::fixed)<<setprecision(3)<<(double)parvalue[i]/100<<"   "<<num[i]<<endl;
	}
	return 0;
}

贪心之装箱

#include <stdio.h>
#include <stdlib.h>

#define N 6
#define V 100

typedef struct box
{
	int no;
	int size;
	struct box *next;
}BOX;

void init_list(BOX **H)
{
	*H=(BOX *)malloc(sizeof(BOX));
	(*H)->no=0;
	(*H)->size=0;
	(*H)->next=NULL;
}

BOX* find_p(BOX *H,int volume)
{
	BOX *p=H->next;
	while(p!=NULL)
	{
		if(p->size+volume<=V) break;
		p=p->next;
	}
	return p;
}
void add_list_tail(BOX *H,BOX *p)
{
	BOX *tmp=H->next;
	BOX *q=H;
	while (tmp!=NULL)
	{
		q=tmp;
		tmp=tmp->next;
	}
	q->next=p;
}
void print_list(BOX *H)
{
	BOX *p=H->next;
	while(p!=NULL)
	{
		printf("%d:%d\n",p->no,p->size);
		p=p->next;
	}
}
int add_box(int volume[])
{
	int count=0;
	int i;
	BOX *p;
	BOX *H=NULL;
	init_list(&H);
	for(i=0;i<N;i++)
	{
		p=find_p(H,volume[i]);
		if(p==NULL)
		{
			count++;
			p=(BOX *)malloc(sizeof(BOX));
			p->no=count;
			p->size=volume[i];
			p->next=NULL;
			add_list_tail(H,p);
		}
		else 
			p->size+=volume[i];
	}
	print_list(H);
	return count;
}
int main()
{
	int ret;
	int volume[]={60,45,35,20,20,20};
	ret=add_box(volume);
	printf("%d\n",ret);
	return 0;
}


六、试探算法思想

         1、针对所给问题,定义问题的解空间。

         2、确定易于搜索的解空间结构

         3、以深度优先搜索空间,并在搜索过程中用剪枝函数避免无效搜索。`

经典例子:八皇后

#include <stdio.h>

#define N 8

int set[N],count,sols;
int judge_place(int row)
{
	int j;
	for(j = 0;j < row;j++)
		if(row - j == set[row] - set[j] || row + set[row] == j + set[j] || set[row] == set[j])
			//(1)判断是否在同一下斜线上(2)判断是否在同一上斜线上(3)判断是否在同一列上
			return 0;
	return 1;
}

void place(int row)
{
	int i;
	if(row == N)
	{
		sols++;
		for(i=0;i<N;i++)
			printf("%d\t",set[i]);
		printf("\n");
	}
	else 
		for(i=0;i<N;i++)
		{
			set[row]=i;
			if(judge_place(row))	
				place(row+1);		
		}	
}

int main()
{
	place(0);
	printf("共有%d方案:\n",sols);
	return 0;
}


七、迭代算法

         1、确定迭代变量:在可以使用迭代算法解决的问题中,至少存在一个迭代变量,即直接或间接地不断有救治递推出心智的变量。

         2、建立迭代关系式:迭代关系式

求近似平方根

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
	double a,x0,x1;
	cin>>a;
	if(a<0) 
	{
		cout<<"Error!"<<endl;
		return 0;
	}
	x0 = a / 2;
	x1 = (x0 + a / x0) / 2;
	while (fabs(x0-x1) >= 1e-6)
	{
		x0=x1;
		x1 = (x0 + a / x0) / 2;
	}
	cout<<"sart(a) = "<<x1<<endl;
	return 0;
}


八、模拟算法思想

         模拟是对真实事物或者过程的虚拟。在编程时为了实现某个功能,可以用语言来模拟该功能,模拟成功也就相应的表示编程的成功


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值