下面介绍一下最常用的八大算法思想
一、比较“笨”的枚举算法
基本思路:
1、确定枚举对象、枚举范围和判定条件
2、注意枚举可能的解,验证每个节是否是问题的解
枚举算法步骤:
1、题解的可能范围,补能遗漏任何一个真正解,也要避免有重复
2、判断是否真正解的方法
3、使可能解的范围降至最小,以便提高解决问题的效率
#include <stdio.h>
int main()
{
int x,y,z;
for(x=0;x<=20;x++)
{
for(y=0;y<=33;y++)
{
z=100-x-y;
if(z%3==0 && x*5+y*3+z/3==100)
{
printf("公鸡:%d,母鸡:%d,小鸡:%d\n",x,y,z);
}
}
}
return 0;
}
二、递推算法思想
1、顺推法:从已知条件出发,逐步推算出要解决问题的方法。(斐波那契数列)
#include <iostream>
#include <vector>
using namespace std;
void get_tuzi(int mouth);
int main()
{
int x,y,z;
int mouth;
cin>>mouth;
get_tuzi(mouth);
return 0;
}
void get_tuzi(int mouth)
{
vector<int> n(mouth);
n[0]=0;
n[1]=1;
for(int i=2;i<mouth+1;i++)
{
n[i]=n[i-1]+n[i-2];
}
cout<<n[mouth]<<endl;
}
2、逆推法:从已知结果出发,用迭代表达式逐步推算出要解决问题开始的条件,即顺推法的逆过程。
#include <stdio.h>
#define FETCH 1000
#define RATE 0.0171
int main()
{
double corpus[49];
int i;
corpus[48]=(double)FETCH;
for(i=47;i>0;i--)
{
corpus[i]=(corpus[i+1])/(1+RATE/12)+FETCH;
}
printf("%.2f",corpus[47]);
}
三、递归算法思想
特点:
1、递归过程一般通过函数或子过程来实现。
2、递归算法在函数或子过程的内部,直接或者间接地调用自己的算法。、
3、递归算法实际上是把问题转化为规模缩小了的同类问题的子问题,然后在递归调用函数或者子过程来表示问题的解。
注意以下几点:
1、递归式在过程或函数中调用自身的过程。
2、在使用递归时,必须有一个明确的递归结束条件,称为递归出口
3、递归算法通常显得很简洁,但是运行效率低,一般不提倡
4、在递归调用过程中,系统用栈来存储每一层的返回点和局部量,如果次数过多。容易溢出,一般不提倡使用。
(汉诺塔问题、阶乘问题)
#include <iostream>
using namespace std;
void hannuo(int n,char a,char b,char c);
int main()
{
int n;
cin>>n;
hannuo(n,'A','B','C');
return 0;
}
void hannuo(int n,char a,char b,char c)
{
if(n==1)
cout<<a<<"-->"<<c<<endl;
else
{
hannuo(n-1,a,c,b);
cout<<a<<"-->"<<c<<endl;
hannuo(n-1,b,a,c);
}
}
阶乘:
#include <iostream>
using namespace std;
int jiecheng(int n);
int main()
{
cout<<jiecheng(2)<<endl;
return 0;
}
int jiecheng(int n)
{
if(n==0) return 1;
else
{
return (jiecheng(n-1)*n);
}
}
四、分治算法思想
1、分解,将要解决的问题划分成若干个规模较小的同类问题;
2、求解,当子问题化分足够小时,用较简单的方法解决;
3、合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
(大数相乘、比赛日程安排)
#include <stdio.h>
#include <malloc.h>
#include <string.h>
void mult(char a[],char b[],char s[]);
void main()
{
char *a="123",*b="456";
char *s=(char *)malloc(sizeof(char)*8);
mult(a,b,s);
printf("%s\n",s);
}
void mult(char a[],char b[],char s[])
{
int i,j,k=0,alen,blen,sum=0,res[65][65]={0},flag=0;
char result[65];
alen=strlen(a);
blen=strlen(b);
for (i=0;i<alen;i++)
for (j=0;j<blen;j++)
res[i][j]=(a[i]-'0')*(b[j]-'0');
for (i=alen-1;i>=0;i--)
{
for (j=blen-1;j>=0;j--)
sum=sum+res[i+blen-j-1][j];
result[k]=sum%10;
k=k+1;
sum=sum/10;
printf("%d\n",result[k-1]);
}
for (i=blen-2;i>=0;i--)
{
for (j=0;j<=i;j++)
sum=sum+res[i-j][j];
result[k]=sum%10;
k=k+1;
sum=sum/10;
printf("%d\n",result[k-1]);
}
if (sum!=0) {result[k]=sum;k=k+1;}
for (i=0;i<k;i++) result[i]+='0';
for (i=k-1;i>=0;i--) s[i]=result[k-1-i];
s[k]='\0';
while(1)
{
if (strlen(s)!=strlen(a)&&s[0]=='0')
strcpy(s,s+1);
else
break;
}
}
#include <iostream>
#include <iomanip>
using namespace std;
int a[65][65]={0};
void gamecal(int k,int n);
int main()
{
int n,i,j=2;
cin>>n;
if(n<=2||n>64) return 0;
while(n!=j)
{
j=j*2;
if(j>64) return 0;
}
gamecal(1,n);
cout<<left;
cout<<setw(5)<<"编号";
cout<<right;
for(j=2;j<=n;j++)
cout<<setw(5)<<j-1<<"天";
cout<<endl;
for(i=1;i<=n;i++)
{ cout<<left;
for(j=1;j<=n;j++)
cout<<setw(8)<<a[i][j];
cout<<endl;
}
return 0;
}
void gamecal(int k,int n)
{
int i,j;
if(n==2)
{
a[k][1]=k;
a[k][2]=k+1;
a[k+1][1]=k+1;
a[k+1][2]=k;
}
else
{
gamecal(k,n/2);
gamecal(k+n/2,n/2);
for(i=k;i<k+n/2;i++)
for(j=n/2+1;j<=n;j++)
a[i][j]=a[i+n/2][j-n/2];
for(i=k+n/2;i<k+n;i++)
for(j=n/2+1;j<=n;j++)
a[i][j]=a[i-n/2][j-n/2];
}
}
五、贪心算法思想
从问题的某一个初始解出发,逐步逼近给定的目标,一遍尽快求出更好的解。当达到算法中的某一部不能再继续前进时,就停止算法,给出一个近似解
存在的问题
1、不能保证最后的结果是最优的
2、不能用来求最大或最小解的问题
3、只能求满足某些约束条件的可行解的范围
基本思路
1、建立数学模型来描述问题
2、把求解的问题分成若干个子问题
3、把子问题的局部最优解合并成原来界问题的一个解
基本过程
1、从问题的某一初始解出发
2、while能向给定总目标前进一步
3、求出可行解的一个解元素
4、由所有解元素组合成问题的一个可行解。
贪心之钱找零
#include <iostream>
#include <iomanip>
using namespace std;
#define MAXN 9
int parvalue[MAXN]={10000,5000,2000,1000,500,100,50,20,10};
int num[MAXN]={0};
void exchange(int n)
{
int i,j;
for(i=0;i<MAXN;i++)
if(n>parvalue[i]) break;
i--;
while(n>0 && i<MAXN)
{
if(n>=parvalue[i])
{
cout<<"sdsd"<<endl;
n=n-parvalue[i];
num[i]++;
}
else if(n<11 && n>=5)
{
num[MAXN-1]++;
break;
}
else i++;
}
}
int main()
{
int i;
float m;
cin>>m;
exchange((int)(100*m));
for(i=0;i<MAXN;i++)
{
cout<<setiosflags(ios::fixed)<<setprecision(3)<<(double)parvalue[i]/100<<" "<<num[i]<<endl;
}
return 0;
}
贪心之装箱
#include <stdio.h>
#include <stdlib.h>
#define N 6
#define V 100
typedef struct box
{
int no;
int size;
struct box *next;
}BOX;
void init_list(BOX **H)
{
*H=(BOX *)malloc(sizeof(BOX));
(*H)->no=0;
(*H)->size=0;
(*H)->next=NULL;
}
BOX* find_p(BOX *H,int volume)
{
BOX *p=H->next;
while(p!=NULL)
{
if(p->size+volume<=V) break;
p=p->next;
}
return p;
}
void add_list_tail(BOX *H,BOX *p)
{
BOX *tmp=H->next;
BOX *q=H;
while (tmp!=NULL)
{
q=tmp;
tmp=tmp->next;
}
q->next=p;
}
void print_list(BOX *H)
{
BOX *p=H->next;
while(p!=NULL)
{
printf("%d:%d\n",p->no,p->size);
p=p->next;
}
}
int add_box(int volume[])
{
int count=0;
int i;
BOX *p;
BOX *H=NULL;
init_list(&H);
for(i=0;i<N;i++)
{
p=find_p(H,volume[i]);
if(p==NULL)
{
count++;
p=(BOX *)malloc(sizeof(BOX));
p->no=count;
p->size=volume[i];
p->next=NULL;
add_list_tail(H,p);
}
else
p->size+=volume[i];
}
print_list(H);
return count;
}
int main()
{
int ret;
int volume[]={60,45,35,20,20,20};
ret=add_box(volume);
printf("%d\n",ret);
return 0;
}
六、试探算法思想
1、针对所给问题,定义问题的解空间。
2、确定易于搜索的解空间结构
3、以深度优先搜索空间,并在搜索过程中用剪枝函数避免无效搜索。`
经典例子:八皇后
#include <stdio.h>
#define N 8
int set[N],count,sols;
int judge_place(int row)
{
int j;
for(j = 0;j < row;j++)
if(row - j == set[row] - set[j] || row + set[row] == j + set[j] || set[row] == set[j])
//(1)判断是否在同一下斜线上(2)判断是否在同一上斜线上(3)判断是否在同一列上
return 0;
return 1;
}
void place(int row)
{
int i;
if(row == N)
{
sols++;
for(i=0;i<N;i++)
printf("%d\t",set[i]);
printf("\n");
}
else
for(i=0;i<N;i++)
{
set[row]=i;
if(judge_place(row))
place(row+1);
}
}
int main()
{
place(0);
printf("共有%d方案:\n",sols);
return 0;
}
七、迭代算法
1、确定迭代变量:在可以使用迭代算法解决的问题中,至少存在一个迭代变量,即直接或间接地不断有救治递推出心智的变量。
2、建立迭代关系式:迭代关系式
求近似平方根
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
double a,x0,x1;
cin>>a;
if(a<0)
{
cout<<"Error!"<<endl;
return 0;
}
x0 = a / 2;
x1 = (x0 + a / x0) / 2;
while (fabs(x0-x1) >= 1e-6)
{
x0=x1;
x1 = (x0 + a / x0) / 2;
}
cout<<"sart(a) = "<<x1<<endl;
return 0;
}
八、模拟算法思想
模拟是对真实事物或者过程的虚拟。在编程时为了实现某个功能,可以用语言来模拟该功能,模拟成功也就相应的表示编程的成功