看贾志鹏线性筛的时候想起来的。
我有一个繁琐的证明- -。
证明
ϕ(pm)=p×ϕ(m),p为素数,m∈Z
.
设
m=pα⋅m′,α,m′∈N,(pα,m′)=1.
那么
ϕ(m)=ϕ(m′)⋅ϕ(pα).
而
ϕ(pα)=(p−1)pα−1
因此
ϕ(m)=ϕ(m′)⋅((p−1)pα−1).
又因为
n=p⋅m=m′⋅pα+1
显然 m′和pα+1互素 ,所以
ϕ(n)=ϕ(m′)⋅ϕ(pα+1)=ϕ(m′)⋅p⋅(p−1)⋅pα−1=ϕ(m)⋅p
证毕。