JAVAEE细细看 开发日常 03 (二) - ElasticSearch 基础之概念

ES快速入门

ES作为一个索引及搜索服务,对外提供丰富的REST接口,使用head插件来测试。

1. 创建索引库

ES的索引库是一个逻辑概念,它包括了分词列表及文档列表,同一个索引库中存储了相同类型的文档。它就相当于MySQL中的表,或相当于Mongodb中的集合。

索引(名词):ES是基于Lucene构建的一个搜索服务,它要从索引库搜索符合条件索引数据。
索引(动词):索引库刚创建起来是空的,将数据添加到索引库的过程称为索引。
两种创建索引库的方法,们的工作原理是相同的,都是客户端向ES服务发送命令。

1)使用postman或curl这样的工具创建:
put http://localhost:9200/索引库名称

{
  "settings":{
  "index":{
      "number_of_shards":1,
      "number_of_replicas":0
    }  
  }
}

number_of_shards:设置分片的数量,在集群中通常设置多个分片,表示一个索引库将拆分成多片分别存储不同的结点,提高了ES的处理能力和高可用性,入门程序使用单机环境,这里设置为1。
number_of_replicas:设置副本的数量,设置副本是为了提高ES的高可靠性,单机环境设置为0.

在这里插入图片描述
2)使用head插件创建
在这里插入图片描述
效果如下:
在这里插入图片描述

2. 创建映射
概念

在索引中每个文档都包括了一个或多个field,创建映射就是向索引库中创建field的过程,下边是document和field与关系数据库的概念的类比:
映射--------------表结构
文档(Document)----------------Row记录
字段(Field)-------------------Columns 列
注意:6.0之前的版本有type(类型)概念,type相当于关系数据库的表,ES官方将在ES9.0版本中彻底删除type。
上边讲的创建索引库相当于关系数据库中的数据库还是表?
1、如果相当于数据库就表示一个索引库可以创建很多不同类型的文档,这在ES中也是允许的。
2、如果相当于表就表示一个索引库只能存储相同类型的文档,ES官方建议 在一个索引库中只存储相同类型的文档。

创建映射

发送:post http://localhost:9200/索引库名称/类型名称/_mapping
由于ES6.0版本还没有将type彻底删除,所以暂时把type起一个没有特殊意义的名字,例如doc。
post 请求:http://localhost:9200/xc_course/doc/_mapping

{
    "properties": {
           "name": {
              "type": "text"
           },
           "description": {
              "type": "text"
           },
           "studymodel": {
              "type": "keyword"
           }
        }
}

映射创建成功,查看head界面:
在这里插入图片描述

创建文档

ES中的文档相当于MySQL数据库表中的记录。(如果不指定id值ES会自动生成ID)
发送:put 或Post http://localhost:9200/xc_course/doc/id值

http://localhost:9200/xc_course/doc/4028e58161bcf7f40161bcf8b77c0000

{
  "name":"Bootstrap开发框架",
  "description":"Bootstrap是由Twitter推出的一个前台页面开发框架,在行业之中使用较为广泛。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。",
  "studymodel":"201001"
}

在这里插入图片描述
通过head查询数据
在这里插入图片描述

搜索文档

1、根据课程id查询文档
发送:get http://localhost:9200/xc_course/doc/4028e58161bcf7f40161bcf8b77c0000
在这里插入图片描述
2、查询所有记录
发送 get http://localhost:9200/xc_course/doc/_search

3、查询名称中包括spring 关键字的的记录
发送:get http://localhost:9200/xc_course/doc/_search?q=name:spring

4、查询学习模式为201001的记录
发送 get http://localhost:9200/xc_course/doc/_search?q=studymodel:201001

查询结果分析
{
    "took": 1,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.2876821,
        "hits": [
            {
                "_index": "xc_course",
                "_type": "doc",
                "_id": "4028e58161bcf7f40161bcf8b77c0000",
                "_score": 0.2876821,
                "_source": {
                    "name": "Bootstrap开发框架",
                    "description": "Bootstrap是由Twitter推出的一个前台页面开发框架,在行业之中使用较为广泛。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。",
                    "studymodel": "201001"
                }
            }
        ]
    }
}

took:本次操作花费的时间,单位为毫秒。
timed_out:请求是否超时
_shards:说明本次操作共搜索了哪些分片
hits:搜索命中的记录
hits.total : 符合条件的文档总数
hits.hits :匹配度较高的前N个文档
hits.max_score:文档匹配得分,这里为最高分
_score:每个文档都有一个匹配度得分,按照降序排列。
_source:显示了文档的原始内容。
3. IK分词器

在添加文档时会进行分词,索引中存放的就是一个一个的词(term),当你去搜索时就是拿关键字去匹配词,最终找到词关联的文档
测试:
post 发送:localhost:9200/_analyze

{"text":"测试分词器,后边是测试内容:spring cloud实战"}

结果:
在这里插入图片描述
会发现分词的效果将 “测试” 这个词拆分成两个单字“测”和“试”,这是因为当前索引库使用的分词器对中文就是单字分词。

安装

使用IK分词器可以实现对中文分词的效果。
下载IK分词器:(Github地址:https://github.com/medcl/elasticsearch-analysis-ik)
在这里插入图片描述
解压,并将解压的文件拷贝到ES安装目录的plugins下的ik目录下
在这里插入图片描述

测试分词效果:
发送:post localhost:9200/_analyze
{"text":"测试分词器,后边是测试内容:spring cloud实战","analyzer":"ik_max_word" }

在这里插入图片描述

两种分词效果

ik分词器有两种分词模式:ik_max_word和ik_smart模式。
1、ik_max_word
​ 会将文本做最细粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国、中华人民、中华、华人、人民共和国、人民、共和国、大会堂、大会、会堂等词语。
2、ik_smart
会做最粗粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为中华人民共和国、人民大会堂。

测试两种分词模式:

发送:post localhost:9200/_analyze

{"text":"中华人民共和国人民大会堂","analyzer":"ik_smart" }
自定义词库

如果要让分词器支持一些专有词语,可以自定义词库。
iK分词器自带一个main.dic的文件,此文件为词库文件。
在这里插入图片描述
在上边的目录中新建一个my.dic文件(注意文件格式为utf-8(不要选择utf-8 BOM))
可以在其中自定义词汇:
比如定义:
配置文件中配置my.dic,
在这里插入图片描述

重启ES,测试分词效果:
发送:post localhost:9200/_analyze
{"text":"测试分词器,后边是测试内容:spring cloud实战","analyzer":"ik_max_word" }

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值