从OpenAI“宫斗大戏”看AI的安全问题,人类能不能提前“拆雷”?

前言

2024年5月17日,OpenAI的首席科学家伊利亚宣布离职,拉开了“宫斗大戏”第二季的序幕。

虽然,伊利亚离职后还能和公司高层愉快合影,但他后来又发推特说“非常期待一个对他个人来说非常有意义的项目”,这场体面离职的背后是波涛汹涌。如果说伊利亚离职暗示了跟OpenAI的价值观不合,那紧跟其后的“超级对齐”负责人简·雷克离职,连发13条推特,揭开阿尔特曼只在乎产品功能和商业化的事实,就彻底点燃了这场“宫斗大戏”。至于后续的员工离职要签“不得诋毁协议”、阿尔特曼和布洛克曼回复质疑等等,把这场宫斗大戏搅成了一锅粥。

当全球都在看OpenAI的热闹时,有些敏锐的人已经发现,AI安全问题才是这场宫斗的导火索。简·雷克称,阿尔特曼对AI安全都是嘴上说得好听,“通往AGI的道路未知又漫长,没有现成经验可借鉴,OpenAI会想尽办法平衡好搜索和安全,造福人类”,但行动上不断削减安全团队可用的算力和各种资源。

一、AI安全现状

AI安全问题不是一时半会才出现的,只不过OpenAI的这场闹剧把它摆到明面上来了。确实,AI产品性能和安全性能两者的分歧难以避免,像 OpenAI一样选择了前者、牺牲安全性的大有人在。

正在为AI技术进步而欢呼雀跃的我们,要做好心理准备——AI会带来误导或更严重的灾难。因为当一个大模型预训练完成时,它可以输出任何你想要的内容。无论是实施犯罪的具体步骤,还是制作危险武器的方法,或者其他违背人类价值观的事情,AI都能快速、通俗、准确地解答,就算它压根不知道正确答案,也能给你瞎编一套“看似可行”的方法论出来。为了遏制这种情况,我们努力过,但效果终究还是有限的。

AI安全问题的来源是大模型本身吗?是,但也不全是。AI会带来什么后果,主要取决于人类怎么使用,有人把AI当作打工的助手,也有人把AI视为打开灰色地带商机、满足不当需求的引子。当越来越多的人钻AI安全漏洞,生成违背人类价值观的内容时,很多“雷”已经在暗处滋生了。

那么,人类能够提前拆除AI安全问题埋下的大雷吗?

二、主要的AI安全保护措施

AI的安全问题涉及很多层面,例如模型、数据、系统、内容等等。在实际部署时,模型剪枝/微调、滤波操作、降低模型过拟合度等防御方法能解决部分AI安全问题,但也可能降低AI的执行效率和产出效果。

下文总结了当前主要的AI安全保护措施:

1.数据隐私保护

为了确保数据的机密性和隐私性,组织可以采用数据加密和匿名化技术。数据加密是一种将数据转换为无法识别的格式,只有通过特定的密钥才能解密的技术。通过数据加密,可以防止未经授权的访问和窃取数据。匿名化技术则是将个人信息和敏感数据进行处理,使其无法被识别出个人身份的技术。除了采用数据加密和匿名化技术外,公司还需要建立完善的AI数据管理制度。

2.强化模型鲁棒性

对抗性攻击是人工智能领域中一个备受关注的问题,它具有很大的隐蔽性和欺骗性,对AI的可靠性和安全性构成了严重威胁。为了提高AI决策和预测的准确性,多种防御技术被用来增强AI的鲁棒性。数据增强是一种常见的方法,即通过生成大量的训练数据来增加模型的泛化能力。预处理和后处理技术也可以用于降低输入数据中的噪声和干扰,提高模型的稳定性。此外,集成学习、迁移学习和鲁棒性训练等方法也被广泛用于提高AI的鲁棒性和抗干扰能力。

3.建立反馈机制

为了更好地应对未知的安全威胁,建立一个反馈机制是非常必要的。这个机制可以让用户、研究人员和开发者向AI系统提供反馈和建议,从而帮助AI系统不断改进和优化安全策略。例如,参与安全漏洞赏金计划,发现并报告安全漏洞,以获得奖励。

4.教育和培训

为了保障AI技术的安全应用,加强对AI开发、使用人员的安全意识教育和培训至关重要。由于AI技术涉及到大量的数据和算法,因此很容易成为黑客攻击的目标,相关人员需要充分认识到安全威胁的存在,并了解如何防范这些威胁。同时,要提高AI开发、使用人员的专业知识和技能,避免出现安全漏洞。

5.多方共享经验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值