dijkstra/SPFA/floyd

朴素版本

void dijkstra(int s)
{
	int vis[n];
	memset(vis,0,sizeof(vis));
	
	
	for(int i=1;i<=n;i++)
	{
		dis[i]=m[s][i];
	}
	dis[s]=0;
	vis[s]=1;

	int now;
	for(int j=2;j<=n;j++)
	{
		int mindis=inf;
		
		for(int i=1;i<=n;i++)
		{
			if(vis[i]==0&&dis[i]<mindis)
			{
			mindis=dis[i];
			now=i;	
			}	
		}
		vis[now]=1;
		for(int i=1;i<=n;i++)
		{
			if(m[now][i]<inf)
			if(dis[now]+m[now][i]<dis[i])
			{
				dis[i]=dis[now]+m[now][i];
			}	
	    }
	}	
}

堆优化+pair

#include<bits/stdc++.h>
#define maxn 20000
#define inf 2147483647
using namespace std;

typedef pair<int,int>P;//first是最短距离,second是顶点的编号
priority_queue<P,vector<P>,greater<P> >que;
int dis[maxn];
int n,m,s;
struct edge
{
	int to,cost;
};

vector<edge> G[maxn];

void dijkstra(int s)
{
 
    for(int i = 1; i <= n; i++)
    dis[i] =inf;
      dis[s]=0;
      
    que.push(P(0,s));//起点入队 
    
	while(!que.empty())
	{
		P p=que.top();//取出最后入队的点 
		que.pop();
		
		int v=p.second; //起点的编号 
	//	cout<<v<<endl;
		if(dis[v]<p.first)continue;//已经遍历过了并且是目前最短路 
		
		for(int i=0;i<G[v].size();i++)//size==从这个点出发的有多少条路 
		{
			edge e=G[v][i];//从v出发的第i条路 
			if(dis[e.to]>dis[v]+e.cost)
			{
				dis[e.to]=dis[v]+e.cost;
				que.push(P(dis[e.to],e.to));
				//cout<<dis[e.to]<<endl;
			}
		}
		 
	}
}
int main()
{   
     cin >> n >> m >> s;
    int from, to, cost;
    edge in;
    for(int i = 0; i < m; i++)
    {
        scanf("%d%d%d",&from ,&to ,&cost);
        in.to = to; in.cost = cost;
        G[from].push_back(in);
    }

    dijkstra(s);
    for(int i = 1; i <= n; i++)
        printf("%d ", dis[i]);
    return 0;
 } 

SPFA

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
vector<pair<int,int> >Road[maxn];
int dis[maxn],is_queue[maxn];//起点到个点的距离,是否入队 

void init()
{
	for(int i=0;i<maxn;i++)Road[i].clear();
	for(int i=0;i<maxn;i++)is_queue[i]=0;
	for(int i=0;i<maxn;i++)dis[i]=1e9; 
 } 
 
int n,m;//点数和边数 

int main()
{
    	while(cin>>n>>m)
    	{
    		init();
			for(int i=0;i<m;i++)
			{
				int from,to,value;
				scanf("%d%d%d",&from,&to,&value);
				Road[from].push_back(make_pair(to,value));
				Road[to].push_back(make_pair(from,value));
			 } 
			 
			 int start,end;
			 scanf("%d%d",&start,&end);
			 
			 queue<int>Q;
			 Q.push(start),dis[start]=0,is_queue[start]=1;
			 //起点入队 
			 while(!Q.empty())
			 {
			 	int now=Q.front();
			 	
			 	Q.pop();
			 	is_queue[now]=0;
			 	for(int i=0;i<Road[now].size();i++)
			 	{
			 		int now2=Road[now][i].first;
			 		
			 		if(dis[now2]>dis[now]+Road[now][i].second)
			 		{
			 			dis[now2]=dis[now]+Road[now][i].second;
						 if(is_queue[now2]==1)continue;
						 is_queue[now2]=1;
						 Q.push(now2); 
					 }
				 }
			 }
			 if(dis[end]==1e9)cout<<"-1"<<endl;
			 else cout<<dis[end]<<endl;
		}
	
		return 0;	
 } 

FLOYD

for(k=0;k<n;k++)
		{
			for(i=0;i<n;i++)
			{
				for(j=0;j<n;j++)
				if(dis[i][j]>dis[i][k]+dis[k][j])
				dis[i][j]=dis[i][k]+dis[k][j];
			}
		}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值