随着智慧农业的快速发展,利用先进的技术手段对牲畜的行为进行自动化监测和管理,已经成为现代农业中的重要研究方向之一。在传统的农业管理模式中,牲畜的行为监测通常依赖于人工观测,耗时耗力且难以实现大规模实时监控。然而,随着物联网、人工智能和深度学习等技术的成熟,利用智能化手段对牲畜进行行为检测和管理成为可能。本文重点研究并实现了一种基于YOLOV8深度学习模型的山羊行为检测系统,该系统为智慧农业中的山羊养殖提供了一种高效、智能的解决方案。
该系统利用目标检测技术,能够自动识别山羊在图像或视频流中的行为状态,主要包括站立和躺下两种典型行为。通过大量的训练数据,系统学习并提取山羊行为的特征,从而在实际应用中能够准确识别山羊的行为状态。系统的核心模型是YOLOV8,这是一种最新的深度学习目标检测算法,具有高效的特征提取能力和实时检测性能。与传统的目标检测算法相比,YOLOV8不仅在检测精度上有显著提升,同时在检测速度上也有明显优势,能够在低延迟的条件下实现对目标的实时跟踪与识别。
在系统的开发过程中,本文构建了一个包含大量山羊行为图像的数据集,用于模型的训练和测试。通过数据增强和标签标注等技术,进一步提升了模型的鲁棒性和泛化能力。实验结果表明,本文提出的山羊行为检测系统在目标检测精度、召回率和处理速度等方面均表现出色。在实验环境中,系统在检测山羊站立和躺下行为的过程中,平均精度(mAP)达到了较高水平,且系统能够在每秒处理多帧图像,满足了实时监测的需求。
除了高精度的检测能力,该系统还具有良好的扩展性和实用性。它不仅可以应用于山羊的行为监测,还能够通过进一步训练,扩展到其他牲畜种类或更多的行为类别,具有广泛的应用前景。通过实时监测山羊的行为状态,系统可以帮助养殖者及时发现异常行为,如长时间躺卧或不正常的活动,从而提高对牲畜健康和生活环境的管理效率。此外,系统生成的行为数据可以与农业物联网系统集成,为智能农业平台提供有价值的数据支持。
本文研究并实现的基于YOLOV8的山羊行为检测系统,为智慧农业领域提供了一种新的自动化监测工具。通过高效的目标检测算法和深度学习技术,系统能够实时、准确地检测山羊的行为状态,提升了养殖管理的自动化水平,并具有广泛的应用价值。未来,随着更多先进技术的引入和数据集的进一步扩展,该系统有望在更多农业场景中得到推广应用,为现代农业的发展提供更强大的技术支撑。
算法流程
项目数据
通过搜集关于数据集为各种各样的骨折相关图像,并使用Labelimg标注工具对每张图片进行标注,分2个检测类别,分别是standing表示”站立”,lying表示”躺卧”。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。