基于YOLOv8深度学习的无人机吊装短波红外的高层建筑火灾目标检测

随着城市化进程的不断加速,高层建筑因其建筑密度和消防设施的局限性,面临着日益严重的火灾风险。传统的火灾检测手段,如人工巡视、自动温度感应和烟雾探测等,往往受限于环境条件和检测精度,尤其在高层建筑中,火灾早期的实时监测和及时响应尤为关键。因此,基于现代科技的发展,结合深度学习与无人机平台的火灾检测技术成为一种创新的解决方案。本研究提出了一种基于YOLOv8深度学习模型的无人机吊装短波红外高层建筑火灾目标检测系统,旨在提供一种高效、精准且实时的火灾检测手段。

该系统结合了短波红外成像技术和无人机平台的优势,能够克服传统火灾检测手段在高层建筑中的局限性。短波红外技术可以在各种天气和环境条件下提供清晰的热成像图像,准确识别火灾区域。同时,利用无人机吊装平台,系统能够灵活覆盖大范围区域,并在复杂环境中迅速部署,确保了火灾检测的高效性。为了提升检测精度和处理速度,本文采用了YOLOv8深度学习模型,并对其进行了优化,使其在处理短波红外图像时具备更高的准确性和实时性。

系统的用户界面通过PyQt5框架开发,提供了便捷的数据集管理、训练过程监控及检测结果展示功能。用户可以通过界面方便地上传和管理数据集,实时查看训练进度,并在火灾检测过程中快速获取检测结果。此外,为了支持系统的重现与进一步优化,本文提供了完整的数据集和训练代码,确保其他研究人员能够基于此进行研究与开发。实验结果表明,该系统在高层建筑火灾检测任务中具有较高的准确性和实时性,不仅能够显著提高火灾预警的响应速度,还为高层建筑的火灾防控提供了有力的技术支持。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:
(1)外星人 Alienware M16笔记本电脑:

(2)惠普 HP暗影精灵10 台式机:

上面的硬件环境提供了足够的计算资源,能够支持大规模图像数据的训练和高效计算。GPU 的引入显著缩短了模型训练时间。
使用两种硬件平台进行调试和训练,能够更全面地验证系统的性能、适应性和稳定性。这种方法不仅提升了系统的鲁棒性和泛化能力,还能优化开发成本和效率,为实际应用场景的部署打下良好基础。

模型训练

Tipps:模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。

YOLOv8是Yolo系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,在全面提升改进Yolov5模型结构的基础上实现,同时保持了Yolov5工程化简洁易用的优势。

Yolov8模型网络结构图如下图所示:

2.数据集准备与训练

本研究使用了包含短波红外的高层建筑火灾图像目标的数据集,并通过 Labelimg 标注工具对每张图像中的目标边界框(Bounding Box)及其类别进行标注。基于此数据集,采用 YOLOv8n 模型进行训练。训练完成后,对模型在验证集上的表现进行了全面的性能评估与对比分析。整个模型训练与评估流程包括以下步骤:数据集准备、模型训练、模型评估。本次标注的目标类别主要集中于短波红外的高层建筑火灾图像目标。数据集总计包含 7417 张图像,具体分布如下:

训练集:5191 张图像,用于模型学习和优化。
验证集:1484 张图像,用于评估模型在未见过数据上的表现,防止过拟合。
测试集:742 张图像,用于最终评估模型的泛化能力。

数据集分布直方图
以下柱状图展示了训练集、验证集和测试集的图像数量分布:

部分数据集图像如下图所示:

部分标注如下图所示:

这种数据分布方式保证了数据在模型训练、验证和测试阶段的均衡性,为 YOLOv8n 模型的开发与性能评估奠定了坚实基础。

图片数据的存放格式如下&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值