Dify+函数计算,快速搭建工作流应用

一、Dify简介

Dify是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(Backend as Service)和LLMOps的理念,使开发者可以快速搭建生产级的生成式AI应用。即使您是非技术人员,也能参与到AI应用的定义和数据运营过程中。同时Dify内置了构建LLM应用所需的关键技术栈,这为开发者节省了许多重复造轮子的时间,使其可以更加专注在创新和业务需求上。

技术架构如下图所示。

outside_default.png

Dify的技术架构包括以下关键部分:

  1. 核心技术组件支撑:Dify集成了创建LLM应用程序的核心技术组件,涵盖了对众多模型的兼容支持、用户友好的Prompt设计界面、高性能的RAG(检索增强生成)系统,以及可自定义的Agent架构。

  2. 可视化编排和运营:Dify通过其直观的界面,实现了Prompt的可视化编排、运维流程及数据集的高效管理,极大地加速了AI应用程序的开发进程,使开发者能够在短时间内完成部署,或迅速将LLM融入现有系统中,并支持持续性的运维优化。

  3. 应用模板和编排框架:Dify为开发者配备了开箱即用的应用模板和编排架构,使得开发者能够依托这些资源迅速开发出基于大规模语言模型的生成式AI应用程序。此外,该平台还支持随业务需求变化即时、平滑地进行扩容,从而有力推动业务发展。

通过这些技术架构的关键组成部分,Dify为开发者提供了一个全面、灵活且易于使用的平台,以支持生成式AI应用的快速开发和部署。

二、为什么使用 Dify?

你可以将 LangChain 之类的库想象成带有锤子、钉子等的工具库。相比之下,Dify 提供了一个更加接近生产环境、开箱即用的完整解决方案 —— 例如,可以将 Dify 想象成一个经过精心工程设计和软件测试的脚手架系统,可以帮助开发者快速搭建 AI 应用。

重要的是, Dify 是开源的 ,由专业的全职团队和社区共同创建。您可以基于任何模型自主部署类似于 Assistants API 和 GPT 的功能,通过灵活的安全措施保持对数据的完全控制,所有这些都在一个易于使用的界面上完成。

三、Dify 能做什么?

  • 工作流 :Dify 提供了一个可视化的画布来构

### Dify多轮对话工作流实现方式 Dify 是一种强大的工具,能够帮助开发者快速构建复杂的多轮对话工作流。通过模块化的理念以及清晰的功能划分,它使得复杂业务逻辑的设计变得更加直观和易于管理。 #### 1. **为何选择Dify** 使用 Dify 创建多轮对话工作流的原因在于其模块化特性[^1]。类似于软件开发中的函数封装,每一个工作流都可以被看作是一个独立的功能单元。这种设计不仅降低了整体系统的复杂度,还提高了代码的可读性和可维护性。此外,由于这些工作流可以单独测试和调整,因此也增强了系统的灵活性和扩展能力。 #### 2. **核心功能解析** Dify 提供了丰富的 API 来支持不同场景下的应用需求[^2]。其中 `POST /workflows/run` 负责启动指定的工作流实例;而 `GET /parameters` 则允许前端动态加载配置项,从而适应不同的运行环境。对于不依赖会话状态的任务(例如翻译或者文档摘要),可以直接利用无会话模式来优化性能表现。 #### 3. **实际案例分析——订票服务** 以一个具体的例子说明如何运用上述理论框架:假设我们要搭建一套自动化的在线订票系统,则可以通过定义多个子任务分别处理用户查询航班信息、确认座位偏好以及完成支付操作等环节[^3]。每个阶段均对应特定条件触发机制,并且彼此之间保持松耦合关系以便后续迭代升级更加便捷高效。 以下是简单的 Python SDK 示例演示如何调用 RESTful APIs 构建自定义流程: ```python import requests def start_workflow(workflow_name, input_data={}): url = f"http://your-dify-instance.com/api/v1/workflows/{workflow_name}/run" headers = {"Authorization": "Bearer YOUR_ACCESS_TOKEN"} response = requests.post(url, json=input_data, headers=headers) if response.status_code == 200: result = response.json() print(f"Workflow {workflow_name} started successfully with ID:", result['id']) return result['id'] else: raise Exception("Failed to start the workflow") # Example usage of starting a ticket booking process try: task_id = start_workflow('ticket_booking', {'origin': 'Beijing', 'destination': 'Shanghai'}) except Exception as e: print(e) ``` 以上脚本展示了怎样初始化一个新的预订旅程并传递必要的初始参数给服务器端进行进一步处理。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值