BZOJ 1012 最大数maxnumber

本文介绍了如何通过线段树和单调队列解决特定数列操作问题,包括查询和插入操作。重点在于实现高效的数据结构以满足题目要求,通过实例演示了解题过程。

Description

现在请求你维护一个数列,要求提供以下两种操作: 1、 查询操作。语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。限制:L不超过当前数列的长度。 2、 插入操作。语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。限制:n是非负整数并且在长整范围内。注意:初始时数列是空的,没有一个数。

Input

第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足(0

Output

对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。

Sample Input

5 100
A 96
Q 1
A 97
Q 1
Q 2

Sample Output

96
93
96

HINT


刚看题目的时候吓了一跳,这么裸的线段树真的是省选题目么

然后就觉得不对劲,想了想,不会是splay吧?

可惜我等蒟蒻实在是懒得打splay(其实我早就发现这不是splay了.。。机智如我)

于是果断打了线段树,然后。。A了


代码如下:

#include<cstdio>
#include<iostream>
#include<cstdlib>
using namespace std;
typedef long long LL;
const int maxn=200010,Max=0x7fffffff;
int m,len,d;char ch;
LL t[maxn*4],tmp,n;
LL max(LL a,LL b){
    if(a>b)return a;
    return b;
}
void update(int o,int l,int r,int loc,LL v){
    if(l==r){t[o]=v;return;}
    int ll=o<<1,rr=ll|1,mid=(l+r)>>1;
    if(loc<=mid)update(ll,l,mid,loc,v);
    else update(rr,mid+1,r,loc,v);
    t[o]=max(t[ll],t[rr]);return;
}
LL ask(int o,int l,int r,int x,int y){
    if(l>=x&&r<=y){return t[o];}
    int ll=o<<1,rr=ll|1,mid=(l+r)>>1;
    if(y<=mid)return ask(ll,l,mid,x,y);
    else if(x>mid)return ask(rr,mid+1,r,x,y);
        else return max(ask(ll,l,mid,x,y),ask(rr,mid+1,r,x,y));
}
int main(){
    scanf("%d%d",&m,&d);
    for(int i=1;i<=m;++i)t[i]=-Max;
    for(int i=1;i<=m;++i){
        ch=getchar();
        while(ch<'!')ch=getchar();
        scanf("%lld",&n);
        if(ch=='A'){
            n=(n+tmp)%d;
            update(1,1,m,len+1,n);len++;
        }
        else{
            tmp=ask(1,1,m,len-n+1,len);
            printf("%lld\n",tmp);
        }
    }return 0;
}

但是呢,这道题目由于题目本身具有特殊性,主要是插入和询问都是只对末尾进行操作
所以我们可以用一个单调队列维护一下,这个的思想比较巧妙,唯一不好的是如果给的是一个上升序列就GG了

代码如下:
 
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int maxn=200010;
typedef long long LL;
int q[maxn],max_[maxn],m,d,len;char ch;
LL n,tmp;
int main(){
    scanf("%d%d",&m,&d);
    for(int i=1;i<=m;++i){
        ch=getchar();
        while(ch<'!')ch=getchar();
        scanf("%lld",&n);
        if(ch=='A'){
            n=(n+tmp)%d;len++;q[len]=n;
            for(int i=len;i;--i){
                if(max_[i]<q[len])max_[i]=q[len];
                else break;
            }
        }
        else{
            tmp=max_[len-n+1];
            printf("%lld\n",tmp);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值