算术简介-Arithmetic

文章目录

第一章 算术

“上帝创造了整数,其他一切都由人创造”。对于我们来说,数学都是从算术开始的,算术研究的是最基础的数量概念,即整数1,2,3,…。最具普遍意义的数学思想,就是区分个体数目的思想,即“计数”。
数学家将1,2,3…称为正整数,或更形象称为自然数;那么怎么利用一些方法将它们结合起来呢,最基础的方法就是加法。正如马天生会跑,自然数天生会加。从小学开始,我们就反复进行数的加减乘除运算,当下对大多数人来说,打开手机上的计算器就能进行精确的计算,省时省力,用笔来进行算术运算已成为苦差事的代名词。当然,算术一词不仅包含四则运算,还包含整数的一些较深层次的性质;例如,欧洲人所说的“高级算术”实际指的是更难的算术的意思,今天更贴切的术语是“数论”。尽管数论这门课博大精深,但它多少还是以素数概念为主的。
如果一个整数大于1,且不能写成更小的整数之积,那么这个整数就是素数。例如,17= 2 × 8.5 2\times 8.5 2×8.5,但17不是合数,因为8.5不是整数。如果一个大于1的整数不是素数,即如果一个数有了除了1和它本身之外的整数因子,那么我们称之为合数。例如,6= 2 × 3 2\times 3 2×3,就是合数。而整数1既不是素数,也不是合数,原因后面讲,因此最小的素数是2。
使这些概念形象化的简单方法,想象必须排成矩形的一块块正方形地砖。如果有12块地砖,我们有很多种不同的方法将其排成矩形,因为12= 1 × 12 1\times 12 1×12,或者 2 × 6 2\times 6 2×6,或者 3 × 4 3\times 4 3×4。但如果是7块地砖,那我们只能有一种方案 1 × 7 1\times 7 1×7,如果有人非要用7块地砖铺房子,那么这房子肯定是又窄又长。根据这个例子,我们可以说,如果一个数只有一种分解方案p= 1 × p 1\times p 1×p,那么这个数就是素数。
素数虽然是高级算术之核心,但他们也是数学深奥难懂的根源,因为尽管整数是通过加法逐一构造的,但素数和合数问题向数学中引入了乘法。数论之难之美,就在于数学家试图从乘法的角度来理解加法运算之结果。因此,自然数此时就像离开水的鱼,它们是加法的产物,却身处陌生的乘法环境中。但反过来想,正因为几亿年前鱼离开了水,才进化出各种各样的两栖类、爬行类、鸟类、哺乳类动物和数学家。一个新的不利环境能够造就完全不同之结果。
下面先看一下整个数学中最重要的一个命题,算术基本定理:任何正整数(1除外)都能用一种且只能用一种方式写成素数之积。
这个定理表明任意整数都可表示为素数的积,其次,只有一种表示法。所以素数是乘法的基本元素。所以根据这个定理,我们必须把1从素数中排除,因为如果将其归为素数,那么例如12= 1 × 3 × 2 × 2 1\times 3\times2\times2 1×3×2×2 ,12= 1 × 1 × 1 × 3 × 2 × 2 1\times 1\times1\times3\times2\times2 1×1×1×3×2×2 ,素数因子分解唯一性将不存在,所以数学家将1定义为既不是素数也不是合数。
接下来自然要面对一个新问题,数学家可能希望确定某个整数是素数还是合数,例如任何一个大于2的偶数定不是素数,任何一个个位是5或0的整数定是合数。除此之外,就比较困难了,例如,4,294,967,297是素数还是合数?大数学家高斯曾非常简洁的描述过这个问题:
素数与合数的区分以及合数的素因子分解的问题是算术中最重要最有用问题之一…,这门科学要求人们应该探索每一个能够解决这一巧妙、著名问题的方法。
所以,这么多年来,科学家们如同飞蛾扑火前赴后继扑向这个问题,例如法国神学家马林.梅森就曾提出过一个有趣问题。他痴迷于形如2^n-1的数,即比2的某个幂少1的数,如今为纪念他,人们将这种数称为“梅森数”,显然,这些数都是奇数,更重要的是,它们中有一些是素数。
梅森发现,如果n是合数,那么 2 ( n − 1 ) 2^{(n-1)} 2(n1) 肯定是合数,例如,n=12,那么 2 ( 12 − 1 ) 2^{(12-1)} 2(121)=4095= 3 × 3 × 5 × 7 × 13 3\times3\times5\times7\times13 3×3×5×7×13 ,是一个合数;但是,当幂是素数时,情况就不一定了。设p=2,3,5,7,产生的梅森数是3,7,31,127;但如果P=11,那么 2 ( 11 − 1 ) 2^{(11-1)} 2(111)=2047= 23 × 89 23\times89 23×89 ,是一个合数;所以梅森认识到p是素数不能保证 2 ( p − 1 ) 2^{(p-1)} 2(p1) 也是一个素数。尽管如此,梅森数仍然是素数的源泉。在1992年,人们找到的最大素数是 2 ( 756839 − 1 ) 2^{(756839-1)} 2(7568391) ,这是一个227832位的庞然大物,但确定哪些梅森数是素数哪些是合数仍旧是数论的一个未解问题。
素数是无穷的,最早的证明是著名数学家欧几里得给出的,在其《几何原本》中给出的。为了在这里给出这个证明,先了解两个基本的数论预备结果。
1.如果a和b是整数n的倍数,那么a-b也是n的倍数。
2.任意合数至少有一个素数因子。(该结果证明略)
下面用反证法证明定理:存在无穷多个素数。
证明:
假设只有有限个素数。记为a,b,c,…,d。
把这些素数乘起来,然后再加1得到一个新数:
N=( a × b × c × . . . × d a\times b\times c\times ...\times d a×b×c×...×d )+1
根据假设,显然N比a,b,c…d任何一个素数都大,并且N不是一个素数,那么N只能是一个合数。根据上述第二个预备结果,N必然有一个素数因子,并且存在于a,b,c…d中。假设这个素数因子是c,同时显然积A= a × b × c × . . . × d a\times b\times c\times ...\times d a×b×c×...×d也是c的倍数,根据第一个预备结果,N与A的差还是c的倍数,但是我们定义N只比这个积大1,那么这个差是1,所以推导出1是c的倍数,这显然不可能,因为最小的素数是2,因此1不可能是任意素数的倍数。假设错误。证明完毕。
这样,我们了解了素数,合数,梅森数等内容,数学中的这部分内容确实美妙优雅,充满魅力。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跋涉2020

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值