同余定理--定义和性质

同余定理

一、基本内容:

数学上,两整数除以同一个整数,若得相同余数 ,则二整数同余(英文:Modular arithmetic)

二、定义

两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m。

记作:a≡b (mod m)

设m是大于1的正整数,a、b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余。

显然,有如下事实

(1)若a≡0(mod m),则m|a;

(2)a≡b(mod m)等价于a与b分别用m去除,余数相同。

(注:m|(a-b)表示m能整除a-b,|为整除符号);

三、性质

1.反身性:a≡a (mod m);

2.对称性:若a≡b(mod m),则b≡a (mod m);

3.传递性:若a≡b(mod m),b≡c(mod m),则a≡c(mod m);

4.线性运算:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m),ac≡bd(mod m)。

5.除法:若ac≡bc(mod m),c ≠0,则a≡b(mod m/gcd(c,m));

显然,当gcd(c,m)=0,即c与m互质时,a≡b(mod m)。

6.幂运算:若a≡b(mod m),则a^n=b^n(mod m);

7.若a≡b(mod mi), (i=1,2,3...n),则a≡b(mod lcm(mi)),lcm(mi)为m1,m2...mn的最小公倍数

以上摘抄自百度百科同余定理:同余定理_百度百科 (baidu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值