同余定理
一、基本内容:
数学上,两整数除以同一个整数,若得相同余数 ,则二整数同余(英文:Modular arithmetic)
二、定义
两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m。
记作:a≡b (mod m)
设m是大于1的正整数,a、b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余。
显然,有如下事实
(1)若a≡0(mod m),则m|a;
(2)a≡b(mod m)等价于a与b分别用m去除,余数相同。
(注:m|(a-b)表示m能整除a-b,|为整除符号);
三、性质
1.反身性:a≡a (mod m);
2.对称性:若a≡b(mod m),则b≡a (mod m);
3.传递性:若a≡b(mod m),b≡c(mod m),则a≡c(mod m);
4.线性运算:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m),ac≡bd(mod m)。
5.除法:若ac≡bc(mod m),c ≠0,则a≡b(mod m/gcd(c,m));
显然,当gcd(c,m)=0,即c与m互质时,a≡b(mod m)。
6.幂运算:若a≡b(mod m),则a^n=b^n(mod m);
7.若a≡b(mod mi), (i=1,2,3...n),则a≡b(mod lcm(mi)),lcm(mi)为m1,m2...mn的最小公倍数
以上摘抄自百度百科同余定理:同余定理_百度百科 (baidu.com)