题目描述
给定
n
个非负整数表示每个宽度为1
的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。示例 2:输入:height = [4,2,0,3,2,5] 输出:9
提示:
n == height.length
1 <= n <= 2 *
0 <= height[i] <=
解题思路
为了计算在柱子之间能够接住多少雨水,可以使用双指针的方法。具体步骤如下:
-
初始化指针和变量:使用两个指针
left
和right
分别指向数组的两端。leftMax
和rightMax
分别记录从左侧到left
位置的最大高度和从右侧到right
位置的最大高度。water
用于记录接住的总雨水量。 -
双指针遍历:如果
height[left]
小于height[right]
,则说明left
位置的柱子可能会接住雨水,接住的水量取决于leftMax
和当前height[left]
的差值。如果leftMax
大于height[left]
,则能接住雨水,并将left
指针右移。否则,移动right
指针并以同样的方式计算right
位置能接住的雨水量。 -
更新最大高度:每次移动指针时,更新
leftMax
或rightMax
,以便在接下来的计算中使用。 -
终止条件:当
left
和right
指针相遇时,遍历结束,所有的雨水量已经计算完毕。
复杂度分析
-
时间复杂度:O(n)。双指针遍历整个数组一次,因此时间复杂度为 O(n),其中
n
是数组的长度。 -
空间复杂度:O(1)。只使用了固定的额外空间来存储指针和变量,因此空间复杂度为 O(1)。
代码实现
package org.zyf.javabasic.letcode.hot100.twopoint;
/**
* @program: zyfboot-javabasic
* @description: 接雨水
* @author: zhangyanfeng
* @create: 2024-08-21 21:09
**/
public class TrapSolution {
public int trap(int[] height) {
// 初始化双指针,分别指向数组的两端
int left = 0, right = height.length - 1;
// 初始化左边和右边的最大高度
int leftMax = 0, rightMax = 0;
// 初始化接住的雨水量
int water = 0;
// 当左指针小于右指针时,继续遍历
while (left < right) {
// 如果左边柱子低于右边柱子,处理左边
if (height[left] < height[right]) {
// 如果当前左边的高度大于等于 leftMax,更新 leftMax
if (height[left] >= leftMax) {
leftMax = height[left];
} else {
// 否则,leftMax 大于当前高度,计算能接住的水量
water += leftMax - height[left];
}
// 将左指针右移
left++;
} else {
// 如果右边柱子低于或等于左边柱子,处理右边
if (height[right] >= rightMax) {
rightMax = height[right];
} else {
// 否则,rightMax 大于当前高度,计算能接住的水量
water += rightMax - height[right];
}
// 将右指针左移
right--;
}
}
// 返回总的接住的雨水量
return water;
}
public static void main(String[] args) {
TrapSolution solution = new TrapSolution();
// 测试用例 1
int[] height1 = {0,1,0,2,1,0,1,3,2,1,2,1};
System.out.println(solution.trap(height1)); // 输出: 6
// 测试用例 2
int[] height2 = {4,2,0,3,2,5};
System.out.println(solution.trap(height2)); // 输出: 9
}
}
具体可参考:https://zyfcodes.blog.csdn.net/article/details/141401712