监督学习

本文总体结构如下:

一、线性模型(for回归)

二、判别分类模型

三、生成分类模型


一、线性模型(for回归)

1、线性回归

举例:房价问题与坐标和面积有关
在这里插入图片描述
那么预测的线性回归模型如下:
在这里插入图片描述
X是一个二维的输入(面积,位置),y表示输出(房价)。
那么损失函数如下,其中i表示第i个样本,N表示样本总数
在这里插入图片描述
利用梯度下降,对w进行求导在这里插入图片描述
对于单个训练样本的参数更新公式如下:
在这里插入图片描述

2、概率假说

假设误差服从一定的分布,比如常见的高斯分布
Alt
在这里插入图片描述
在这里插入图片描述
那么对w求极大似然在这里插入图片描述
在这里插入图片描述最大化似然函数就是最小化如下公式:
在这里插入图片描述
也就是我们在第一部分所展示的损失函数。

二、判别分类模型

逻辑回归

对于两类的分类问题,y是标签(0或1)
在这里插入图片描述
那么后验概率可以写成:
在这里插入图片描述
也就是我们所说的sigmoid函数,图像如下:
在这里插入图片描述
它所解决的是分类问题,参数估计的证明如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

生成分类和判别分类的对比

  • 判别分类:对后验概率建模或直接学习判别函数。计算P(Ck | x):例如逻辑回归。计算判别函数:例如感知器,SVM。假设判别形式,而不是密度。
  • 生成分类:显式或隐式建模输入和输出的分布。假设一个关于类别条件概率密度p(x | Ck)的模型。 根据数据估算p(x | Ck)和P(Ck),然后应用贝叶斯规则计算后验概率P(Ck | x)。根据P(Ck | x)执行最佳分类。

三、生成分类模型

1、高斯判别分析GDA

通过对数据的分布进行建模,估计出模型的参数,假设一组数据服从多维正态分布
在这里插入图片描述那么所求的参数就是在这里插入图片描述
在这里插入图片描述
以上即求得参数,
不妨做这样的想象,如果我们把逻辑回归中的w看作是GDA中的参数,那么我们可以把逻辑分类模型,看作是求数据的分布。
在这里插入图片描述
GDA模型作出了强假设,对数据更加有效,更加依赖于数据的分布。
而逻辑回归的假设较弱,模型更加自由,并且对于偏离建模假设的情况更健壮。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值