Matplotlib 入门

基本绘图

import matplotlib.pyplot as plt

plt.ylabel("Grade")    #设置Y轴标签
plt.plot([1,5,9,10,12,15], [3,2,7,9,0,1])    #(X轴,Y轴)
plt.savefig('test', dpi=600)    #另存为PNG文件,每英寸像素点为600
plt.axis([-1, 10, 0, 12])    #设置坐标轴范围,x∈[-1, 10]  y[∈0, 6]
plt.show()  #显示图像

设置绘图区域

import matplotlib.pyplot as plt

plt.subplot(a, b, c)    #将绘图区域划分为a行、b列的a*b块,选取第c块进行图像绘制

例:

import matplotlib.pyplot as plt
import numpy as np

def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

a = np.arange(0.0, 5.0, 0.02)

plt.subplot(2,1,1)
plt.plot(a, f(a))

plt.subplot(2,1,2)
plt.plot(a, np.cos(2*np.pi*a), 'r--')
plt.show()

结果:

在这里插入图片描述

绘图函数plot()

plt.plot(x, y, format_string, **kwargs)
  • x: X轴数据,列表或数组,可选
  • y: Y轴数据,列表或数组
  • format_string: 控制曲线的格式字符串,可选,由颜色字符、风格字符和标记字符组成
  • **kwargs: 第二组或更多(x, y, format_string),用以同时绘制多条曲线

中文显示

方法一:

通过修改全局字体达到目的,不推荐

import matplotlib
matplotlib.rcParams['font.family'] = 'SimHei'
方法二:

在有中文输入的地方增加属性: fontproperties

import maplotlib

plt.xlabel('横轴:时间', fontproperties='SimHei') #只对X轴有效

文本显示

  • plt.xlabel() 对X轴增加文本标签
  • plt.ylabel() 对Y轴增加文本标签
  • plt.title() 对图形整体增加文本标签
  • plt.text() 在任意位置增加文本
plt.text(x, y, s, **kwargs)

(x, y)添加文本的坐标位置,s为添加的文本

  • plt.annotate() 添加注释
plt.annotate(s, xy=arrow_crd, xytext=text_crd, arrowprops=dict)

s:要注解的字符串
xy:箭头所在位置
xytext:文本所在位置
arrowprops:箭头相关参数

绘制子图

利用plt.subplot2grid()绘制复杂子图
方法一
plt.subplot2grid(GridSpec, CurSpec, colspan=1, rowspan=1)
  • GridSpec: 将主图划分的基本形状,如(3,3)将图分成3x3共九块子图
  • CurSpec:当前选中的子图区域,如(1,0)选中第一行第0列
  • colspan:从当前选中的子图位置延伸列的宽度,如colspan=2则延伸列的宽度至2
  • rowspan:从当前选中的子图位置延伸行的长度,如rowspan=2则延伸行的长度至2

例:

plt.subplot2grid((3,3),(0,0),colspan=3)
plt.subplot2grid((3,3),(1,0),colspan=2)
plt.subplot2grid((3,3),(1,2),rowspan=2)
plt.subplot2grid((3,3),(2,0))
plt.subplot2grid((3,3),(2,1))

结果:

在这里插入图片描述#### 方法二

import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(3,3)

ax1 = plt.subplot(gs[0, :]) #gs[r,c] r为行, c为列
ax2 = plt.subplot(gs[1, :-1])
ax3 = plt.subplot(gs[1:, -1])
ax4 = plt.subplot(gs[2, 0])
ax5 = plt.subplot(gs[2, 1])

结果:

在这里插入图片描述

如果你是初学者并想学习 Matplotlib,下面是一些入门步骤: 1. 安装 Matplotlib:在你的 Python 环境中安装 Matplotlib 库。可以使用 pip 命令在终端或命令提示符中执行以下命令:`pip install matplotlib` 2. 导入 Matplotlib:在 Python 脚本或交互式环境中导入 Matplotlib。通常,我们使用 `import matplotlib.pyplot as plt` 将其导入,并将其简称为 `plt`,以便更方便地调用函数。 3. 创建基本图形:使用 Matplotlib 绘制图形的第一步是创建一个图形对象(Figure)和一个或多个子图(Axes)。可以使用 `plt.figure()` 创建一个新的图形对象,并使用 `figure.add_subplot()` 方法创建子图。也可以使用 `plt.subplots()` 一次创建多个子图。 4. 绘制图形:使用子图对象的方法,如 `ax.plot()`、`ax.scatter()`、`ax.bar()` 等来绘制相应的图形。可以根据需要传递数据和其他参数来自定义图形的样式和属性。 5. 自定义图形:Matplotlib 提供了很多方法和选项来自定义图形的样式、颜色、标签、标题、坐标轴、图例等。你可以通过修改子图对象的属性或调用相应的方法来进行自定义。 6. 显示图形:使用 `plt.show()` 方法显示绘制的图形。这将打开一个新的窗口或在 Jupyter Notebook 中嵌入图形。 7. 保存图形:如果你想将图形保存到文件中,可以使用 `plt.savefig()` 方法提供保存路径和文件名,指定图形的格式(如 PNG、JPEG、SVG 等)。 这些是 Matplotlib 的基本入门步骤,你可以从这里开始尝试绘制简单的图形,并逐渐学习更高级的用法和功能。同时,官方文档和在线教程也是学习 Matplotlib 的好资源。祝你学习愉快!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值