AI之家

Had I not seen the sun, I could have borne the shade.

机器学习十大算法

机器学习算法分为三类:有监督学习、无监督学习、增强学习。有监督学习需要标识数据(用于训练,即有正例又有负例),无监督学习不需要标识数据,增强学习介于两者之间(有部分标识数据)。下面我将向大家具体介绍机器学习中10大算法(只介绍有监督、无监督两类,暂不介绍增强学习)。 一、有监督学习 算法一:决策树...

2018-12-14 18:27:02

阅读数:52

评论数:0

中国人工智能领域企业分类(附2018企业排行)

人工智能企业可以在应用层、技术层、基础上进行区分。 在应用层的中国人工智能公司按照领域划分包括: 机器人:Geek+、 Rokid、图灵机器人、优必选。 自动驾驶:百度、天瞳威视、地平线机器人、驭势科技。 无人机:大疆、亿航、Hover Camera、零度智控。 语音助手:百度、出门问问...

2018-12-11 17:15:44

阅读数:241

评论数:2

python经典面试题(持续更新中。。。)

1.http和https的区别和优缺点。 1. http 的URL 以http:// 开头,https以https:// 开头。 2. http 标准端口是80 ,https是443。 3.https 协议需要到ca申请证书,http不需要。 4.http 是超文本传输协议,信息是明文传输...

2018-12-10 18:05:45

阅读数:33

评论数:0

机器学习之PCA算法

一,引言 降维是对数据高维度特征的一种预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。 降维具有如下一些优点:...

2018-12-19 17:38:03

阅读数:22

评论数:0

机器学习之---文本分析(jieba分词和词云绘制)

一、定义: 文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。 二、语料库(Corpus) 语料库是我们要分析的所有文档的集合。 import os import os.path filePaths = [] #定义一个数组变量 #再用OS...

2018-12-18 10:19:55

阅读数:51

评论数:0

各个排序算法的时间复杂度和稳定性

一、插入排序 每次将一个待排序的数据,跟前面已经有序的序列的数字一一比较找到自己合适的位置,插入到序列中,直到全部数据插入完成。 二、希尔排序 先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增...

2018-12-17 18:12:21

阅读数:19

评论数:0

Mysql面试题整理(一)

表名和字段 –1.学生表 Student(s_id,s_name,s_birth,s_sex) –学生编号,学生姓名, 出生年月,学生性别 –2.课程表 Course(c_id,c_name,t_id) – –课程编号, 课程名称, 教师编号 –3.教师表 Teacher(t_id,t_name)...

2018-12-17 17:50:43

阅读数:40

评论数:0

机器学习面试题整理(带答案详解,持续更新中。。。)

1.什么是机器学习 机器学习是为了应对系统程序设计,属于计算机科学类的学科,它能根据经验进行自动学习和提高。例如:一个由程序操纵的机器人,它能根据从传感器搜集到的数据,完成一系列的任务和工作。它能根据数据自动地学习应用程序。 2.机器学习和数据挖掘的区别 机器学习是指在没有明确的程序指令的情...

2018-12-15 16:02:53

阅读数:293

评论数:0

numpy.random.randn()与rand()、random.random()的区别

一、random.randn()和random.rand() numpy中有一些常用的用来产生随机数的函数。randn()和rand()就属于其中一种 numpy.random.randn(d0,d1,…,dn)是从标准正态分布中返回一个或多个样本值。 numpy.random.rand(d0,d...

2018-12-15 11:31:24

阅读数:62

评论数:0

Python应用的五大热门领域

一、人工智能---- 为Python火热增长动力 借着人工智能的东风,Python在这两年逐渐火了起来,Python在编程语言排行中的不断攀升,不得不说有着人工智能的很大功劳。凭借Python简洁易于上手的语法和丰富的扩展,Python在人工领域的应用越来越广泛。越来越多的培训机构也以“Pytho...

2018-12-12 17:27:45

阅读数:32

评论数:0

修改Jupyter的默认打开目录

Jupyter启动之后默认打开的是C盘目录,一般临时使用可以将文件建在桌面Desktop 想要打开其他盘符的文件无法实现,如D、E、F盘目录下的文件。现有解决办法如下,无需修改Jupyter Notebook的默认打开路径。 思路: 进入CMD模式 ...

2018-12-11 17:48:13

阅读数:23

评论数:0

人工智能、机器学习、深度学习、数据挖掘、数据分析区分

在开始学习python大数据之前,先要搞清楚人工智能、机器学习、深度学习、数据挖掘、数据分析都是什么意思。人工智能大家族包含着丰富的内容,分清楚了每一项都是做什么的,才能选对路线。 一、人工智能AI 人工智能分为强人工智能和弱人工智能。 强人工智能是通过计算机来构造复杂的、拥有与人类智慧...

2018-12-11 17:09:10

阅读数:41

评论数:0

解决matplotlib中文标签乱码问题

2018-12-11 11:26:01

阅读数:21

评论数:0

python基础复习01----dos命令和数据类型

1. 程序 为了完成某种特定功能,以某种程序设计语言编写的有序指令的集合。程序是指挥cpu工作的“工作手册”。计算机只能执行二进制代码,程序设计语言一般类似英文,想要让计算机理解你写的程序,必须把程序代码“翻译”成计算机能理解的二进制代码,根据翻译形式的不同,可以分为: 编译 将程序代码翻译...

2018-12-10 20:17:28

阅读数:21

评论数:0

不忘初心,专注Python!

随着计算机语言的发展,Python也跻身于语言排行的常青树。要是说Python是最目前最火爆的语言,应该没有人反驳吧。在当下的人工智能浪潮中,Python可以说是C位出道,成功引起大家的注意的了。 国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、...

2018-12-08 15:58:02

阅读数:53

评论数:0

python数据分析08——pandas数据聚合与分组运算

python数据分析08——pandas数据聚合与分组运算 在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表, pandas提供了 一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。 一、GroupBy机制 分组运算"...

2018-12-08 15:41:28

阅读数:75

评论数:1

python数据分析07--matplotlib绘图和可视化

python数据分析07–matplotlib绘图和可视化 一、简介 ​ 信息可视化(也叫绘图)是数据分析中最重要的工作之一。它可能是探索过程的一部分,例 如,帮助我们找出异常值、必要的数据转换、得出有关模型的idea等。另外,做一个可交互的 数据可视化也许是工作的最终目标。 ​ matplotl...

2018-12-08 14:57:27

阅读数:55

评论数:0

python数据分析06--Pandas数据归整:聚合和重塑

在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不不利利于分析,应采用聚 合、合并、重塑数据的方法进行处理。 一、层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多 个(两个以上)索引级别。 In [9]: dat...

2018-11-09 17:37:39

阅读数:79

评论数:0

Python数据分析常用的8款工具

Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性。Python可用于数据分析,但其单纯依赖Python本身自带的库进行数据分析还是具有一定的局限性的,需要安装第三方扩展库来增强分析和挖掘能力。 Python数据分析需...

2018-11-09 15:22:25

阅读数:38

评论数:0

python数据分析05——Pandas数据清洗、转换和面元划分

在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理理、转换以及重塑。 这些工作会占到分析师时间的80%或更更多。 pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以让你轻松地将数据规整为想要的格式。 ###一、处理缺失数据 1.检测缺失数据 ...

2018-11-08 18:33:24

阅读数:109

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭