[2016/7/23][usaco 2.2]Subset Sums

http://train.usaco.org/usacoprob2?a=iLSvc4aatpo&S=subset

题目大意:给你一个数N(<=39),一个集合Q里的元素是1~N,把这个集合分成两个,使两个子集的元素和相等。有多少种分割方案。

就是0-1背包问题。设Q的元素和为sum,则两个子集的元素和是sum/2,即背包容量。从N个数里面挑若干,使背包充满,求方案数。

然后可以得知总共方案数是dp[sum]/2.

如果sum是奇数,直接不能分割,输出0.

接下来找状态转移方程。

状态设为dp[i],意为从前i个数里挑若干个使其满足和是j的方案数。

这道题有个奇坑!!

long long数组,一定要初始化!还要用多少就初始化多少!!不然会出现奇怪的错误,都是玄学

http://www.nocow.cn/index.php/USACO/subset

讲得挺清楚,直接上代码

/*
ID:49743541
LANG:C++
TASK:subset
*/
#include <stdio.h>
#include <algorithm>
#include <iostream>
using namespace std;
long long dp[43];
int main(){
	freopen("subset.in", "r", stdin);
	freopen("subset.out", "w", stdout);
	int N;
	cin>>N;
	int sum = N*(N+1)/2;
	if(sum%2) {
		printf("0\n");
		return 0;
	}
	sum/=2;
	for(int i = 1;i<sum;i++)
		dp[i] = 0;
	dp[0] = 1;
	for(int i = 1;i<=N;++i){
		for(int j = sum;j>=i;--j){
			dp[j] += dp[j-i];
		}
	}
	cout<<(dp[sum]/2)<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值