第四章-变形

本文详细介绍了Pandas中的变形函数,包括melt、crosstab、pivot、pivot_table、stack和unstack的使用特点。讨论了这些函数与多级索引的关系,以及哪些函数会导致索引维数变化。此外,还提出了关于哑变量方法的思考,以及stack和unstack函数在使用后是否能确保与原始表一致的问题。
摘要由CSDN通过智能技术生成

四、问题与练习

1. 问题

【问题一】 上面提到了许多变形函数,如melt/crosstab/pivot/pivot_table/stack/unstack函数,请总结它们各自的使用特点。
  • pivot函数
    不能分组,index和columns不能完全相同,否则会报错
  • pivot_table函数
    (1)有分组功能,可以通过aggfunc参数对组内数据进行聚合统计,可传入各类函数,默认为mean
    (2)可以通过margins参数汇总边际状态,通过margins_name设置名字
    (3)行,列,值都可以为多级
  • crosstab函数
    支持分组,但不支持多级分组,可以通过normalize参数进行数据归一化,也可以汇总边际状态
  • melt函数
    相当于pivot函数的逆操作
  • stack函数
    可以将通过pivot_table函数压缩的数据展开成stack,参数level可指定变化的列索引是哪一层
  • unstack函数
    stack的逆函数,功能上类似于pivot_table()函数
【问题二】 变形函数和多级索引是什么关系?哪些变形函数会使得索引维数变化?具体如何变化?

可以通过设置变形函数的index,values参数来生成多级索引

【问题三】 请举出一个除了上文提过的关于哑变量方法的例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值