2020蓝桥杯省赛真题 数字三角形(DFS/动态规划)

该题是数字三角形(递推)​​​​​​ 该题的翻版,其中两道题之间最大的区别在于这句话“向左下走的次数与向右下走的次数相差不能超过 1”(注意这句话的理解,我们是在走到头了再判断,而不是一边走一边判断)

这里我的第一思路是dfs解决,因为上面这句话的存在,证明我们在选择一条路不满足条件的时候,我们需要退回去重新选择,正是这个想法让我想到dfs

代码如下(奈何dfs只能对付小数据,面对大数据便超时了)

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<set>
#include<algorithm>
#include<cmath>
#include<stack>
#include<iomanip>
#include<cstdio>
using namespace std;
typedef unsigned long long ll;
int sum=0,MAXN=0,Right=0,Left=0;
void dfs(int num[][105],int x,int y,int n)
{
	sum+=num[x][y];	//每次加上我们走的路上的数字
	if(Left>(int)(((float)(n-1)/2)+0.5)||Right>(int)(((float)(n-1)/2)+0.5))
	{
		return;//这里即判断往左走的步数 或者往右走的步数二者相差>1 这里是用的是否超过全部步数的一半来判断
	}
	if(x==n)//走到最后一行
	{
		MAXN=max(MAXN,sum);//找最大值
		return ;
	}	
	for(int i=0;i<=1;i++)//走左边或者走右边
	{ 
		int tx=x+1;//这里必然往下走
		int ty=y+i;//走左或右
		if(num[tx][ty]==-1)//越界
		{
			continue;
		}
		Right+=i;//记录右边走到步数
		if(i==0)
		{
			Left++;//记录左边走的步数
		}		
		dfs(num,tx,ty,n);//继续搜索
		sum-=num[tx][ty];//记得在往回走的时候更新数据
		if(i==1)
		Right-=i;
		else
		Left-=1;
	}
	
}

int main()
{
	int n;
	cin>>n;
	int num[105][105]={-1};//初始化
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=i;j++)
		{
			cin>>num[i][j];
		}
	}
	dfs(num,1,1,n);//搜索
	cout<<MAXN<<endl;
	return 0;
} 

下面介绍正确做法

实际上由于之前做过数字三角形(递推)

这道题,所以我很自然地想到该题可以使用动态规划来解

三步走入门动态规划之三步走

  • 定义dp数组涵义,我们这里选择一个二维数组dp[ i ][ j ]为从第一行第一个元素到第 i 行第 j 个元素的最大路径和
  • 找到数组元素之间的关系式,这里由于我已经做过类似的题目,所以我很快就找到了,不过即使没有做过类似题目,该题的关系式也不难找,首先我们只能向下走且选择向左或向右,那么我们的dp[ i ][ j ]必然与dp[ i-1 ][ j ]或者dp[ i-1 ][  j-1 ]有关系,那么我们只需确定第 i 行第 j 个元素是加上第 i-1 行的左边元素比较大还是右边元素比较大即可,所以我们得到
  • 初始化即  dp[1][1]=a[1][1] 
  dp[i][j]=a[i][j]+max(dp[i-1][j],dp[i-1][j-1]);

这里的 a 代表存储输入数据的那个数组

做到这里,我们已经完成一半了,还记得“向左下走的次数与向右下走的次数相差不能超过 1”这句话吗,这句话的真正涵义是什么呢,我们不妨拿几个例子试试这句话

对于这个数字三角形,我们发现它有5行,从第一行出发要到达第五行,我们发现我们需要走4步

其中这四步,我们由于 “向左下走的次数与向右下走的次数相差不能超过 1”这句话,我们必然不能全部走左边、全部走右边、走一次左边、走一次右边,那么我们必然只能走2次左和走2次右,我们可以在脑海里模拟“走”的过程,我们惊奇地发现,我们只能走到最后一行的中间元素!!!!!!

这是对于数字三角形行数是奇数的情况

对于数字三角形是偶数的情况,读者可以自行推导(或者直接在上面这个数字三角形加一行即可)

我们又又又又惊奇地发现竟然只能走到最后一行中间的两个元素

综上,我们将其转化成代码

#include <iostream>
using namespace std;

int a[105][105]={0};
int dp[105][105]={0};
int main()
{
  int n;
  cin>>n;
  for(int i=1;i<=n;i++)
  {
    for(int j=1;j<=i;j++)
    {
      cin>>a[i][j];
    }
  }
  dp[1][1]=a[1][1];//初始化
  for(int i=2;i<=n;i++)
  {
    for(int j=1;j<=i;j++)
    {
      dp[i][j]=a[i][j]+max(dp[i-1][j],dp[i-1][j-1]);//关系式
    }
  }
  if(n%2!=0)//规律总结
  {
    cout<< dp[n][n/2+1]<<endl;
  }
  else//规律总结
  {
    cout<< max(dp[n][n/2+1],dp[n][n/2])<<endl;
  }

  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZZWWWFFF_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值