该题是数字三角形(递推) 该题的翻版,其中两道题之间最大的区别在于这句话“向左下走的次数与向右下走的次数相差不能超过 1”(注意这句话的理解,我们是在走到头了再判断,而不是一边走一边判断)
这里我的第一思路是dfs解决,因为上面这句话的存在,证明我们在选择一条路不满足条件的时候,我们需要退回去重新选择,正是这个想法让我想到dfs
代码如下(奈何dfs只能对付小数据,面对大数据便超时了)
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<set>
#include<algorithm>
#include<cmath>
#include<stack>
#include<iomanip>
#include<cstdio>
using namespace std;
typedef unsigned long long ll;
int sum=0,MAXN=0,Right=0,Left=0;
void dfs(int num[][105],int x,int y,int n)
{
sum+=num[x][y]; //每次加上我们走的路上的数字
if(Left>(int)(((float)(n-1)/2)+0.5)||Right>(int)(((float)(n-1)/2)+0.5))
{
return;//这里即判断往左走的步数 或者往右走的步数二者相差>1 这里是用的是否超过全部步数的一半来判断
}
if(x==n)//走到最后一行
{
MAXN=max(MAXN,sum);//找最大值
return ;
}
for(int i=0;i<=1;i++)//走左边或者走右边
{
int tx=x+1;//这里必然往下走
int ty=y+i;//走左或右
if(num[tx][ty]==-1)//越界
{
continue;
}
Right+=i;//记录右边走到步数
if(i==0)
{
Left++;//记录左边走的步数
}
dfs(num,tx,ty,n);//继续搜索
sum-=num[tx][ty];//记得在往回走的时候更新数据
if(i==1)
Right-=i;
else
Left-=1;
}
}
int main()
{
int n;
cin>>n;
int num[105][105]={-1};//初始化
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
cin>>num[i][j];
}
}
dfs(num,1,1,n);//搜索
cout<<MAXN<<endl;
return 0;
}
下面介绍正确做法
实际上由于之前做过数字三角形(递推)
这道题,所以我很自然地想到该题可以使用动态规划来解
三步走入门动态规划之三步走
- 定义dp数组涵义,我们这里选择一个二维数组dp[ i ][ j ]为从第一行第一个元素到第 i 行第 j 个元素的最大路径和
- 找到数组元素之间的关系式,这里由于我已经做过类似的题目,所以我很快就找到了,不过即使没有做过类似题目,该题的关系式也不难找,首先我们只能向下走且选择向左或向右,那么我们的dp[ i ][ j ]必然与dp[ i-1 ][ j ]或者dp[ i-1 ][ j-1 ]有关系,那么我们只需确定第 i 行第 j 个元素是加上第 i-1 行的左边元素比较大还是右边元素比较大即可,所以我们得到
- 初始化即 dp[1][1]=a[1][1]
dp[i][j]=a[i][j]+max(dp[i-1][j],dp[i-1][j-1]);
这里的 a 代表存储输入数据的那个数组
做到这里,我们已经完成一半了,还记得“向左下走的次数与向右下走的次数相差不能超过 1”这句话吗,这句话的真正涵义是什么呢,我们不妨拿几个例子试试这句话
对于这个数字三角形,我们发现它有5行,从第一行出发要到达第五行,我们发现我们需要走4步
其中这四步,我们由于 “向左下走的次数与向右下走的次数相差不能超过 1”这句话,我们必然不能全部走左边、全部走右边、走一次左边、走一次右边,那么我们必然只能走2次左和走2次右,我们可以在脑海里模拟“走”的过程,我们惊奇地发现,我们只能走到最后一行的中间元素!!!!!!
这是对于数字三角形行数是奇数的情况
对于数字三角形是偶数的情况,读者可以自行推导(或者直接在上面这个数字三角形加一行即可)
我们又又又又惊奇地发现竟然只能走到最后一行中间的两个元素
综上,我们将其转化成代码
#include <iostream> using namespace std; int a[105][105]={0}; int dp[105][105]={0}; int main() { int n; cin>>n; for(int i=1;i<=n;i++) { for(int j=1;j<=i;j++) { cin>>a[i][j]; } } dp[1][1]=a[1][1];//初始化 for(int i=2;i<=n;i++) { for(int j=1;j<=i;j++) { dp[i][j]=a[i][j]+max(dp[i-1][j],dp[i-1][j-1]);//关系式 } } if(n%2!=0)//规律总结 { cout<< dp[n][n/2+1]<<endl; } else//规律总结 { cout<< max(dp[n][n/2+1],dp[n][n/2])<<endl; } return 0; }