最大子段和(分治)

传送门 

第一思路比较容易想到的是使用暴力算法解决,即直接枚举所有可能的子段,然后得到最大的字段和即可(用前缀和计算和)

//暴力 
#include<iostream>
#include<climits>
#include<algorithm>
using namespace std;
const int MAX=2e5+10;

int n,ans=INT_MIN;
int arr[MAX];

int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>arr[i];
		arr[i]=arr[i-1]+arr[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=0;j<=i-1;j++){
			ans=max(ans,arr[i]-arr[j]);
		}
	}
	cout<<ans<<endl;
	return 0;
} 

 当然,该题的数据范围不会容许O(n^2)的暴力算法通过,因此我们需要更好的算法

这里介绍使用分治算法进行解答

思路分析:

主要的思路还是使用分治的思想,即将数组一次又一次地分成两个数组来求最大子段和,而最小的情况就是当分成只剩1个元素时,最大子段和就是该元素本身,此外,往上走一层,当分成只剩两个元素时,我们发现可以得到左右两边的最大子数组都可以得到,因此比较取最大值即可,是不是这样就好了呢??

例如当剩下两个元素1,1 此时左右最大子段和分别是1和1,但是实际上应该是2,也就是说,我们实际上忽略了一种情况:最大子段和在中间的情况,因此我们还需要计算中间的子段和与左右子段和比较取最大值即可

#include<iostream>
#include<climits>
using namespace std;
const int MAX=2e5+10;

int n;
int arr[MAX];
//7
//2 -4 3 -1 2 -4 3
int getSubMAX(int i,int j){//分别代表左右下标 
	int sum;
	if(i==j){
		return arr[i];
	}else{
		int center=(i+j)/2;
		//取左边最大子数组
		int leftMAX=getSubMAX(i,center);
		//取右边最大子数组
		int rightMAX=getSubMAX(center+1,j);
		//取中间最大子数组
		int sum1=0,s1=INT_MIN;
		for(int k=center;k>=i;k--){
			sum1+=arr[k];
			if(sum1>s1){
				s1=sum1;
			}
		} 
		int sum2=0,s2=INT_MIN;
		for(int k=center+1;k<=j;k++){
			sum2+=arr[k];
			if(sum2>s2){
				s2=sum2;
			} 
		}
		sum=s1+s2;
		if(leftMAX>sum){//三者取最大 
			sum=leftMAX;
		}
		if(rightMAX>sum){
			sum=rightMAX; 
		} 
	}
	return sum;
}

int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>arr[i];
	}
	int ans=getSubMAX(1,n);
	cout<<ans<<endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZZWWWFFF_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值