幂运算(快速幂)

Description
给你三个整数a,b,p,求a^b mod p的值

Input
第一行是一个整数t,表示t组数据。

接下来的n行,每行有 3 个整数,分别表示a, b, p

t ≤ 2 * 10^5,a > 0, b > 0, p ≥ 2,

Output
每组数据,输出一个整数表示答案。

Sample Input
2
2 10 9
2 3 3
Sample Output
7
2

该题第一思路比较容易想到直接一个for循环对a进行连乘操作同时一边取模,但是该题并没有那么简单,在面对大数据的时候这样的算法就显得不够用了

因此我们介绍使用快速幂解决

可参考

所谓的快速幂就是通过降低我们连乘的次数来达到的,例如我们考虑计算2^10,按照正常一个一个连乘我们需要10次运算,但是如果我们将底数变大而指数变小呢?如2^10=4^5,这样我们就只需要5次运算了,当然还可以继续优化,此时的指数变成了5,我们不能再像刚刚那样直接底数平方了,因此,我们考虑将其中一个底数提出来就变成4^5=4*4^4,此时对4^4再重复刚刚的降指数操作了,到这里我们便可以写代码了

#include<iostream>

using namespace std;

int t,a,b,p;

int main(){
	cin>>t;
	while(t--){
		int res=1;
		cin>>a>>b>>p;
		//求a的b次方 
		int base=a;//底数
		int index=b;//指数
		while(index>0){
			if(index%2==1){//指数为奇数 
				//将奇数变偶数
				index--;				
				res=res*base%p;//抽离出多余的一个底数 
			}else{//指数为偶数 
				index/=2;//指数缩小一半
				//底数变为原来的平方 
				base=base*base%p; //记得取模
			}
		}
		printf("%d\n",res);
	} 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZZWWWFFF_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值