Description
给你三个整数a,b,p,求a^b mod p的值
Input
第一行是一个整数t,表示t组数据。
接下来的n行,每行有 3 个整数,分别表示a, b, p
t ≤ 2 * 10^5,a > 0, b > 0, p ≥ 2,
Output
每组数据,输出一个整数表示答案。
Sample Input
2
2 10 9
2 3 3
Sample Output
7
2
该题第一思路比较容易想到直接一个for循环对a进行连乘操作同时一边取模,但是该题并没有那么简单,在面对大数据的时候这样的算法就显得不够用了
因此我们介绍使用快速幂解决
所谓的快速幂就是通过降低我们连乘的次数来达到的,例如我们考虑计算2^10,按照正常一个一个连乘我们需要10次运算,但是如果我们将底数变大而指数变小呢?如2^10=4^5,这样我们就只需要5次运算了,当然还可以继续优化,此时的指数变成了5,我们不能再像刚刚那样直接底数平方了,因此,我们考虑将其中一个底数提出来就变成4^5=4*4^4,此时对4^4再重复刚刚的降指数操作了,到这里我们便可以写代码了
#include<iostream> using namespace std; int t,a,b,p; int main(){ cin>>t; while(t--){ int res=1; cin>>a>>b>>p; //求a的b次方 int base=a;//底数 int index=b;//指数 while(index>0){ if(index%2==1){//指数为奇数 //将奇数变偶数 index--; res=res*base%p;//抽离出多余的一个底数 }else{//指数为偶数 index/=2;//指数缩小一半 //底数变为原来的平方 base=base*base%p; //记得取模 } } printf("%d\n",res); } return 0; }