2017 Multi-University Training Contest - Team 6 HDU 6103 Kirinriki (尺取法)

4 篇文章 0 订阅
2 篇文章 0 订阅

2017 Multi-University Training Contest - Team 6 HDU 6103 Kirinriki (尺取法)


题目链接:
HDU 6103 Kirinriki


题目大意:
给一个字符串s,和一个值m.
定义 disA,B=i=0n1|AiBn1i| .
在s串中找出最长的AB子串使得 dis{A,B}m


解题思路:

比赛的时候这道题给的数据是 |S|20000 。 就在想 O(nlogn) 的复杂度, 不敢写 O(n2) 的, 最后实在没办法写了 O(n2) 的, 没想到官方题解就是让用 O(n2) 做。。。

首先可以枚举一个对称点, 然后用尺取法往外扩张,考虑两种情况, 中间的留一个字母和中间不留字母。

代码:

/**********************************************
 *Author*        :ZZZZone
 *reated Time*  : 2017/8/11 13:47:16
 *ended  Time*  : 2017/8/11 14:07:47
*********************************************/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
typedef pair<int, int> PII;
typedef long long LL;
typedef unsigned long long ULL;
const int MaxN = 5e3;
int T, m, ans, len;
char s[MaxN + 5];

void check(int p){
    int r = p; 
    int tot = 0;
    for(int i = p; i >= 0; i--){
        int tmp = 2 * p + 1;
        if(tmp - i >= len) break;
        tot += abs(s[i] - s[tmp - i]);
        while(tot > m && r >= i){
            tot -= abs(s[r] - s[tmp - r]);
            r--;
        }
        ans = max(ans, r - i + 1);
    }
    tot = 0, r = p - 1;
    for(int i = p - 1; i >= 0; i--){
        int tmp = 2 * p;
        if(tmp - i >= len) break;
        tot += abs(s[i] - s[tmp - i]);
        while(tot > m && r >= i){
            tot -= abs(s[r] - s[tmp - r]);
            r--;
        }
        ans = max(ans, r - i + 1);
    }
}

int main()
{
    scanf("%d", &T);
    while(T--){
        scanf("%d", &m);
        scanf("%s", s);
        ans = 0; len = strlen(s);
        for(int i = 0; i < len; i++) check(i);
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值