2017 Multi-University Training Contest - Team 6 HDU 6105 Gameia(博弈)

4 篇文章 0 订阅
4 篇文章 0 订阅


2017 Multi-University Training Contest - Team 6 HDU 6105 Gameia(博弈)


题目链接:
HDU 6105 Gameia

题目大意:
给一棵树, n 个点,n1条边, 刚开始每个点都没颜色, A可以将一个点涂成白色,B可以把一个点以及与这个点相邻的点(不管染没染过色)全部变成黑色,B有k次机会可以砍断任意一条边。 A先开始, 所有点都被涂过游戏结束, 只要存在一个白色点,B就输。 问最后谁能赢.

解题思路:

  • 首先要知道, B的机会, 如果他要用,那么可以视为在最刚开始就用。
  • 然后是博弈的问题, 比赛的时候学长在写6103字符串那题, 我就在旁边推这个博弈, 画了几个图发现, 对于一条链来说, 只有长度为2的时候B才必胜, 因为链长度为 134. A必胜,如果长度大于4, 那么A一定可以通过染最边上或者边上的第二个使得这条链以 2,3 的长度缩减, 最终变成长度为 34 , 这样又变成了A必胜。 这里不理解的可以自己画一下, 因为AB都绝对聪明, 而且A先手。
    对于一棵树来说, 也是如此, 并且在树上A更占优势, 因为有很多分支点。 所以我就想把这棵树切成两两一段。 看需要次数是否超过k, 还要判断存在切完之后是否存在单点的情况。(如果存在单点, A点一下必胜)。

代码:

/**********************************************
 *Author*        :ZZZZone
 *reated Time*  : 2017/8/10 14:29:50
 *ended  Time*  : 2017/8/10 14:41:02
*********************************************/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
typedef pair<int, int> PII;
typedef long long LL;
typedef unsigned long long ULL;

const int MaxN = 500;
int n, k, tot;
int all, pre[2 * MaxN + 5], last[MaxN + 5], other[2 * MaxN + 5];
bool ok, vis[MaxN + 5];
int ind[MaxN + 5];

void Build(int x, int y) {
    pre[++all] = last[x];
    last[x] = all;
    other[all] = y;
}

void Dfs(int x, int fa) {
    int ed = last[x];
    int cnt = 0;
    while(ed != -1) {
        int dr = other[ed];
        if(dr != fa) {
            Dfs(dr, x);
            if(ind[dr] > 0 || ind[x] > 0) tot++;
            else ind[dr]++, ind[x]++;
        }
        ed = pre[ed];
    }
}

int main()
{
    int T;
    scanf("%d", &T);
    while(T--) {
        all = -1; memset(last, -1, sizeof(last));
        memset(vis, 0, sizeof(vis));
        memset(ind, 0, sizeof(ind));
        scanf("%d%d", &n, &k);
        for(int i = 2; i <= n; i++) {
            int x;
            scanf("%d", &x);
            Build(x, i); Build(i, x);
        }
        ok = 1; tot = 0;
        Dfs(1, 0);
        for(int i = 1; i <= n; i++) if(ind[i] == 0) ok = 0;
        if(tot > k) ok = 0;
        if(ok) printf("Bob\n");
        else printf("Alice\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值