已知一条公路上,有一个起点与一个终点,这之间有n个加油站;已知从这n个加 油站到终点的距离d与各个加油站可以加油的量l,起点位置至终点的距离L与起 始时刻油箱中汽油量P;假设使用1个单位的汽油即走1个单位的距离,油箱没有 上限,最少加几次油,可以从起点开至终点?(如果无法到达终点,返回-1)
这个贪心过程和跳越游戏的贪心规律十分类似,跳跃游戏:获取最少跳跃次数,即在无法到达更远的地方时,在这之前应该跳到一个可以到达更 远位置的位置!
这里和跳跃游戏的差异是跳跃游戏中节点之间的距离是恒定的,而本题目中节点之间的距离却是不定得,所以想要在初始油量的支撑下获取可以加油的节点的过程中需要实时维护一个最大值,即节点可以加的油量(这个维护使用最大堆来维护)。
过程如下:
1.设置一个最大堆,用来存储经过的加油站的汽油量。
2.按照从起点至终点的方向,遍历各个加油站之间与加油站到终点距离。
3.每次需要走两个加油站之间的距离d,如果发现汽油不够走距离d时,从最 大堆中取出一个油量添加,直到可以足够走距离d。
4.如果把最大堆的汽油都添加仍然不够行进距离d,则无法达到终点。
5.当前油量P减少d。
6.将当前加油站油量添加至最大堆
实现如下:
int cmp(pair<int,int> a,pair<int,int> b) {
return a.first > b.first;
}
/*
L为起点到终点的距离
P起点初始的汽油容量
stop:<加油站至终点的距离,加油站汽油量>
*/
int get_least_expedition(int L, int P,vector<pair<int,int>> &stop) {
priority_queue<int> Q;//维护的最大堆
int result = 0;//记录加油的次数
sort(stop.begin(), stop.end(),cmp);//对加油站至终点的距离从大到小进行排序,防止输入无序的情况
stop.push_back(make_pair(0,0));//将终点的pair入数组
for (int i = 0;i < stop.size(); ++i) {
int dis = L - stop[i].first;
/*加油的条件是堆中油量不为空且当前油量小于要行驶的距离*/
while(!Q.empty() && dis > P){
P += Q.top();
Q.pop();
result ++;
}
/*无法到达终点的情况是最大堆中无油可加,且当前油量不足以行驶剩余距离*/
if (Q.empty() && dis > P) {
return -1;
}
P -= dis;
L = stop[i].first;
Q.push(stop[i].second);
}
return result;
}
测试代码如下:
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
int cmp(pair<int,int> a,pair<int,int> b) {
return a.first > b.first;
}
int get_least_expedition(int L, int P,vector<pair<int,int>> &stop) {
priority_queue<int> Q;
int result = 0;
sort(stop.begin(), stop.end(),cmp);
stop.push_back(make_pair(0,0));
for (int i = 0;i < stop.size(); ++i) {
int dis = L - stop[i].first;
while(!Q.empty() && dis > P){
P += Q.top();
Q.pop();
result ++;
}
if (Q.empty() && dis > P) {
return -1;
}
P -= dis;
L = stop[i].first;
Q.push(stop[i].second);
}
return result;
}
int main() {
vector<pair<int,int>> stop;
int P;
int L;
int distance,fuel;
int N;
cin >> N;
for (int i = 0;i < N; ++i) {
cin >> distance;
cin >> fuel;
stop.push_back(make_pair(distance,fuel));
}
cin >> L;
cin >> P;
cout << get_least_expedition(L,P,stop);
return 0;
}
输入输出如下
输入:
4
4 4
5 2
11 5
15 10
25 10
输出:
2