https://www.lintcode.com/problem/dices-sum/description
扔 n 个骰子,向上面的数字之和为 S。给定 n,请列出所有可能的 S值及其相应的概率。
Example
样例 1:
输入:n = 1
输出:[[1, 0.17], [2, 0.17], [3, 0.17], [4, 0.17], [5, 0.17], [6, 0.17]]
解释:掷一次骰子,向上的数字和可能为1,2,3,4,5,6,出现的概率均为 0.17。
样例 2:
输入:n = 2
输出:[[2,0.03],[3,0.06],[4,0.08],[5,0.11],[6,0.14],[7,0.17],[8,0.14],[9,0.11],[10,0.08],[11,0.06],[12,0.03]]
解释:掷两次骰子,向上的数字和可能在[2,12],出现的概率是不同的。
Notice
你不需要关心结果的准确性,我们会帮你输出结果。
class Solution:
# @param {int} n an integer
# @return {tuple[]} a list of tuple(sum, probability)
def dicesSum(self, n):
# Write your code here
# 状态转移方程 dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+dp[i-1][j-3]+dp[i-1][j-4]+dp[i-1][j-5]+dp[i-1][j-6]
dp=[[0]*(6*n) for i in range(n)]
res=[]
total=6**n
# dp初始化 第一个筛子
for i in range(6):
dp[0][i]=1
for i in range(1,n):
# 第i个骰子,最小和为i最大为6*i
for j in range(i,6*(i+1)):
dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+dp[i-1][j-3]+dp[i-1][j-4]+dp[i-1][j-5]+dp[i-1][j-6]
for i in range(n-1,6*n):
res.append((i+1,dp[n-1][i]/total))
return res