LintCode 20. 骰子求和

https://www.lintcode.com/problem/dices-sum/description

扔 n 个骰子,向上面的数字之和为 S。给定 n,请列出所有可能的 S值及其相应的概率。

Example

样例 1:

输入:n = 1
输出:[[1, 0.17], [2, 0.17], [3, 0.17], [4, 0.17], [5, 0.17], [6, 0.17]]
解释:掷一次骰子,向上的数字和可能为1,2,3,4,5,6,出现的概率均为 0.17。

样例 2:

输入:n = 2
输出:[[2,0.03],[3,0.06],[4,0.08],[5,0.11],[6,0.14],[7,0.17],[8,0.14],[9,0.11],[10,0.08],[11,0.06],[12,0.03]]
解释:掷两次骰子,向上的数字和可能在[2,12],出现的概率是不同的。

Notice

你不需要关心结果的准确性,我们会帮你输出结果。

 

class Solution:
    # @param {int} n an integer
    # @return {tuple[]} a list of tuple(sum, probability)
    def dicesSum(self, n):
        # Write your code here
        # 状态转移方程 dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+dp[i-1][j-3]+dp[i-1][j-4]+dp[i-1][j-5]+dp[i-1][j-6]
        dp=[[0]*(6*n) for i in range(n)]
        res=[]
        total=6**n
        # dp初始化 第一个筛子
        for i in range(6):
            dp[0][i]=1
        for i in range(1,n):
            # 第i个骰子,最小和为i最大为6*i
            for j in range(i,6*(i+1)):
                dp[i][j]=dp[i-1][j-1]+dp[i-1][j-2]+dp[i-1][j-3]+dp[i-1][j-4]+dp[i-1][j-5]+dp[i-1][j-6]
        for i in range(n-1,6*n):
            res.append((i+1,dp[n-1][i]/total))
        return res
        

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值