- 博客(36)
- 资源 (1)
- 收藏
- 关注
acl2016 best paper
ACL 2016 best paper 之一Combining deep neural networks with
structured logic rules is desirable to harness
flexibility and reduce uninterpretability of
the neural models. We propose a general
framework capable of enhancing various
types of neural networks (e.g., CNNs and
RNNs) with declarative first-order logic
rules. Specifically, we develop an iterative
distillation method that transfers the structured
information of logic rules into the
weights of neural networks. We deploy the
framework on a CNN for sentiment analysis,
and an RNN for named entity recognition.
With a few highly intuitive rules,
we obtain substantial improvements and
achieve state-of-the-art or comparable results
to previous best-performing systems.
2017-09-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅