一、AI Agent的前世:从概念到萌芽
(一)早期探索
AI Agent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AI Agent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。
(二)技术突破
2017年后,大语言模型(LLM)的出现推动了AI Agent能力的大幅提升。这些模型基于Transformer架构,显著改善了上下文理解能力,使AI Agent在自然语言处理和多媒体生成方面取得了重大进展。如今,AI Agent已经成为大模型时代的“APP”,探索新一代人机交互及协作范式。
二、AI Agent的今生:技术突破与广泛应用
(一)技术基础
AI Agent的核心技术包括机器学习、自然语言处理、计算机视觉等。现代AI Agent通常由以下几个关键组件构成:
- 感知器(Sensor):负责接收来自环境的信息,如图像、声音、文本等。
- 知识库(Knowledge Base):存储和管理AI Agent关于环境和自身状