When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?
You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.
A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.
Find the length of the longest almost constant range.
The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).
Print a single number — the maximum length of an almost constant range of the given sequence.
5 1 2 3 3 2
4
11 5 4 5 5 6 7 8 8 8 7 6
5
In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.
In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].
自己的做法:
#include<cstdio>
#include<bits/stdc++.h>
#include<algorithm>
#include<cstdlib>
using namespace std;
int main()
{
int n,a[100200],last[100200],first[100200];
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
int m=0x3f3f3f3f,M=-1,ans=-1,t;
for(int i=1;i<=n;i++){
if(m>a[i]){
m=a[i];
first[m]=i;
}
if(M<a[i]){
M=a[i];
first[M]=i;
}
if(m==a[i]){
last[m]=i;
}else if(M==a[i]){
last[M]=i;
}
if(M-m>1){
if(m==a[i]){
t=i-last[M];
ans=max(t,ans);
//printf("%d\n",t);
first[M-1]=last[M]+1;
//printf("%d %d ***更新最小值\n",M,first[M-1]);
M--;
}else{
t=i-last[m];
ans=max(t,ans);
//printf("%d\n",t);
first[m+1]=last[m]+1;
//printf("%d %d ***更新最大值\n",m,first[m+1]);
m++;
}
}else if(M-m<=1){
int t1=i-first[M]+1;
int t2=i-first[m]+1;
t=max(t1,t2);
ans=max(ans,t);
}
}
printf("%d\n",ans);
return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+50;
int a[maxn],dp[maxn];
int main()
{
int n;
scanf("%d",&n);
int ans=0;
for( int i=1; i<=n; i++ )
{
int x;
scanf( "%d",&x );
if( dp[x-1]>dp[x+1] ) ans=max( ans,i-max( dp[x-2],dp[x+1] ) );
else ans=max( ans, i-max(dp[x+2],dp[x-1] ) );
dp[x]=i;
}
printf( "%d\n",ans );
return 0;
}