602B - Approximating a Constant Range

B. Approximating a Constant Range
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

Find the length of the longest almost constant range.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

Output

Print a single number — the maximum length of an almost constant range of the given sequence.

Examples
input
Copy
5
1 2 3 3 2
output
4
input
Copy
11
5 4 5 5 6 7 8 8 8 7 6
output
5
Note

In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

In the second sample, there are three almost constant ranges of length 4[1, 4][6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].


自己的做法:

#include<cstdio>
#include<bits/stdc++.h>
#include<algorithm>
#include<cstdlib>
using namespace std;
int main()
{
    int n,a[100200],last[100200],first[100200];
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    int m=0x3f3f3f3f,M=-1,ans=-1,t;
    for(int i=1;i<=n;i++){
        if(m>a[i]){
            m=a[i];
            first[m]=i;
        }
        if(M<a[i]){
            M=a[i];
            first[M]=i;
        }
        if(m==a[i]){
            last[m]=i;
        }else if(M==a[i]){
            last[M]=i;
        }
        if(M-m>1){
            if(m==a[i]){
                t=i-last[M];
                ans=max(t,ans);
                //printf("%d\n",t);
                first[M-1]=last[M]+1;
                //printf("%d  %d ***更新最小值\n",M,first[M-1]);
                M--;
            }else{
                t=i-last[m];
                ans=max(t,ans);
                //printf("%d\n",t);
                first[m+1]=last[m]+1;
                //printf("%d  %d ***更新最大值\n",m,first[m+1]);
                m++;
            }
        }else if(M-m<=1){
           int  t1=i-first[M]+1;
           int  t2=i-first[m]+1;
            t=max(t1,t2);
            ans=max(ans,t);


        }

    }
    printf("%d\n",ans);
    return 0;
}

高手的做法:

#include <bits/stdc++.h>
using namespace std;

const int maxn=1e5+50;

int a[maxn],dp[maxn];



int main()
{
        int n;
        scanf("%d",&n);
        int ans=0;
        for(  int i=1; i<=n; i++ )
        {
              int x;
              scanf( "%d",&x );
              if(  dp[x-1]>dp[x+1] ) ans=max(  ans,i-max(  dp[x-2],dp[x+1] )  );
              else ans=max(  ans, i-max(dp[x+2],dp[x-1] ) );
              dp[x]=i;
        }
        printf( "%d\n",ans );
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值