包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。

他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。

比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的

(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。

比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)  
输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2  
4  
5   
程序应该输出:
6  
再例如,
输入:
2  
4  
6    
程序应该输出:

INF

YI:    先判断gcd(a[1]~a[n])是否等于1,若不等于1,就说明无法凑成某些数。

ER:    用完全背包来覆盖之前的状态,最后从1开始扫,扫到没有的情况ans++。

#include<bits/stdc++.h>
using namespace std;
int dp[100000]={0};
int main()
{
       int n,a[120],tmp=1;
       scanf("%d",&n);
       for(int i=0;i<n;i++){
            scanf("%d",&a[i]);
            tmp=i==0?a[0]:__gcd(a[i],tmp);
       }
       if(tmp!=1){
            printf("INF\n");
            return 0;
       }else{
            dp[0]=1;
            for(int i=0;i<n;i++){
                for(int j=a[i];j<=100000;j++){
                    if(dp[j-a[i]]==1){
                        dp[j]=1;
                    }
                }
            }
            int ans=0;
            for(int i=1;i<=100000;i++){
                if(dp[i]==0){
                    ans++;
                }
            }
            printf("%d\n",ans);
       }
        return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页