hdu4709-(三角形-叉乘)

Herding

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3319    Accepted Submission(s): 988


Problem Description
Little John is herding his father's cattles. As a lazy boy, he cannot tolerate chasing the cattles all the time to avoid unnecessary omission. Luckily, he notice that there were N trees in the meadow numbered from 1 to N, and calculated their cartesian coordinates (Xi, Yi). To herding his cattles safely, the easiest way is to connect some of the trees (with different numbers, of course) with fences, and the close region they formed would be herding area. Little John wants the area of this region to be as small as possible, and it could not be zero, of course.
 

Input
The first line contains the number of test cases T( T<=25 ). Following lines are the scenarios of each test case.
The first line of each test case contains one integer N( 1<=N<=100 ). The following N lines describe the coordinates of the trees. Each of these lines will contain two float numbers Xi and Yi( -1000<=Xi, Yi<=1000 ) representing the coordinates of the corresponding tree. The coordinates of the trees will not coincide with each other.
 

Output
For each test case, please output one number rounded to 2 digits after the decimal point representing the area of the smallest region. Or output "Impossible"(without quotations), if it do not exists such a region.
 

Sample Input
1 4 -1.00 0.00 0.00 -3.00 2.00 0.00 2.00 2.00
 

Sample Output
2.00

这道题目其实挺简单的,读完题目之后就应该想到求的是三角形的最小面积,

在操作时由于数据小,三层循环,就可以解决,三角形的面积可以用叉积来得到

叉乘法:行列式

                |    x1   y1    1     |

S= 0.5* |    x2    y2    1    |

                |    x3    y3    1    |

三阶行列式:  S=  0.5×(    x1y2    -    x1y3    -    x2y1    +    x3y1    +    x2y3    -    x3y2    )

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int T; cin>>T;
    while(T--){
        int n;  double s=-1,minz=9999999,a[105],b[105];  cin>>n;
        for(int i=1;i<=n;i++) scanf("%lf%lf",&a[i],&b[i]);
        if(n<=2){
            printf("Impossible\n");
            continue;
        }
        for(int i=1;i<=n-2;i++)
            for(int j=i+1;j<=n-1;j++){
                for(int k=j+1;k<=n;k++){
                    s=fabs(a[i]*b[j]-a[j]*b[i]+a[k]*b[i]-a[i]*b[k]+a[j]*b[k]-a[k]*b[j])*(0.5);
                    if(s!=0&&s<minz)
                        minz=s;
                }
            }
        if(minz==9999999)
            printf("Impossible\n");
        else
        printf("%.2lf\n",minz);
    }
}

阅读更多

没有更多推荐了,返回首页