标题: 分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 106 5
5 6
样例输出:
2
题意:给定n块巧克力,M个人分;其中每一块的巧克力都是W×H的。
问:每个人分到最大的巧克力为多少?
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef struct point{
ll w,h;
}p;
p a[100010];
ll n,k;
int check(ll x){
ll sum=0;
for(int i=1;i<=n;i++){
sum+=(a[i].h/x)*(a[i].w/x);
}
return sum;
}
int main()
{
scanf("%lld%lld",&n,&k);
for(int i=1;i<=n;i++){
scanf("%lld%lld",&a[i].h,&a[i].w);
}
ll l=1,r=100010,mid;
while(l<=r){
mid=((r+l)>>1);
if(check(mid)>=k){
l=mid+1;
}else{
r=mid-1;
}
}
printf("%lld\n",r);
return 0;
}