参考博客:
luogu P3389 【模板】高斯消元法
线性方程组(高斯消元)f_zyj
高斯消元—kuangbin
解线性方程组——高斯消元の板子
高斯消元:
【前置知识】:
高斯消元有一个很重要的应用就是求解线性方程组:
线性方程组:(特指n个变量)n个n元一次方程方程组
转化为矩阵,按照x1~xn排列,对应的值为b1~bn.
可以转化为矩阵:
其中,A叫系数矩阵,X为解集,b是常数项
以上线性方程组可以写成:
AX=b,满足矩阵乘法,X的每一列 元素&nb
本文详细介绍了高斯消元法在求解线性方程组中的应用,包括矩阵的初等变换、行阶梯型矩阵和行最简形矩阵的概念。通过具体的消元过程和回代过程展示了解决线性方程组的步骤,并提到了主元的选择在算法实现中的重要性。
【前置知识】:
高斯消元有一个很重要的应用就是求解线性方程组:
线性方程组:(特指n个变量)n个n元一次方程方程组
转化为矩阵,按照x1~xn排列,对应的值为b1~bn.
可以转化为矩阵:
其中,A叫系数矩阵,X为解集,b是常数项
以上线性方程组可以写成:
AX=b,满足矩阵乘法,X的每一列 元素&nb
400

被折叠的 条评论
为什么被折叠?