【矩阵】高斯消元

本文详细介绍了高斯消元法在求解线性方程组中的应用,包括矩阵的初等变换、行阶梯型矩阵和行最简形矩阵的概念。通过具体的消元过程和回代过程展示了解决线性方程组的步骤,并提到了主元的选择在算法实现中的重要性。

参考博客:

luogu P3389 【模板】高斯消元法

线性方程组(高斯消元)f_zyj

高斯消元—kuangbin

解线性方程组——高斯消元の板子


高斯消元:

【前置知识】:

高斯消元有一个很重要的应用就是求解线性方程组:

线性方程组:(特指n个变量)n个n元一次方程方程组

转化为矩阵,按照x1~xn排列,对应的值为b1~bn.


\large \left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=b_{1}\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=b_{2}\\ \cdots \\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots +a_{nn}x_{n}=b_{n} \end{matrix}\right.

可以转化为矩阵:

\large A=\begin{pmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots &\ \vdots& & \vdots \\ a_{n1} & a_{n2} &\cdots & a_{nn} \\ \end{pmatrix}     \large X=\begin{pmatrix} x_{1}\\ x_{2}\\ \vdots \\ x_{n} \end{pmatrix}      \large b=\begin{pmatrix} b_{1}\\ b_{2}\\ \vdots\\ b_{n} \end{pmatrix}

其中,A叫系数矩阵,X为解集,b是常数项

以上线性方程组可以写成:

AX=b,满足矩阵乘法,X的每一列 元素&nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值