【线段树 | ST表】最大数

本博客介绍如何在正整数序列中处理添加和询问最大数的操作。使用线段树(ST表)的数据结构,可以高效地解决这个问题。在每次添加操作后,可以动态维护序列中最后L个数的最大值。示例输入和输出展示了该算法的运行情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个正整数数列a1,a2,a3……an ,每一个数都在 0~p-1之间。可以对这列数进行两种操作:

  • 添加操作:向序列后添加一个数,序列长度变成 n+1;
  • 询问操作:询问这个序列中最后 L个数中最大的数是多少。

程序运行的最开始,整数序列为空。写一个程序,读入操作的序列,并输出询问操作的答案。


输入格式

第一行有两个正整数 m,p,意义如题目描述;

接下来 m 行,每一行表示一个操作。如果该行的内容是 Q L,则表示这个操作是询问序列中最后 L 个数的最大数是多少;如果是 A t,则表示向序列后面加一个数(t+a)%p,加入的数是 t。其中,a 是输入的参数, 是在这个添加操作之前最后一个询问操作的答案(如果之前没有询问操作,则a=0 )。

第一个操作一定是添加操作。对于询问操作, L>0且不超过当前序列的长度。


输出格式:

对于每一个询问操作,输出一行。该行只有一个数,即序列中最后 L个数的最大数。

 

样例输入

10 100
A 97
Q 1
Q 1
A 17
Q 2
A 63
Q 1
Q 1
Q 3
A 99

样例输出

97
97
97
60
60
97

【题意】:每次A都是往后插入一个t=(a+t)%p,强制在线的做法。

【题解】:

居然有一个ST表的做法,太厉害了,根据洛谷题解看到的,一位大佬反向建ST表。

然后这个题目直接处理即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+100;
ll m,p,len;
ll a[N],t,tmp,Last,f[N][21];
char Ins[N];
int main()
{
    scanf("%lld%lld",&m,&p);
    while(m--){
        scanf("%s%lld",Ins,&t);
        if( Ins[0]=='A' ){
            t=(Last+t)%p;
            f[++len][0] = t;
            for(int i=1; len-(1<<i) >=0 ;i++){
                f[len][i] = max ( f[len][i-1],f[len-(1<<i-1)][i-1]);
            }
        }else{
            ll x = len-t+1, y=len;
            ll k = log(t)/log(2.0);
            tmp = max(f[y][k],f[x+(1<<k)-1][k]);
            Last = tmp;
            printf("%lld\n",tmp);
        }
    }
    return 0;
}

【线段树】:

线段树只要先把空间开出来就是N,然后直接处理即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+10;
char Ins[10];
ll tree[N<<2],t,m,p,Last,tmp,len=0;
void Add(int No,int L,int R,int pos,ll val){
    if( R < pos || pos < L ) return ;
    if( L==R && R==pos){
        tree[No] = val;
        return ;
    }
    int Mid = (L+R)>>1;
    Add(No<<1, L,Mid,pos,val);
    Add(No<<1|1,Mid+1,R,pos,val);
    tree[No] = max( tree[No<<1], tree[No<<1|1]);
}
ll query(int No,int L,int R,int x,int y){
    if( R<x || y<L ){
        return 0;
    }if( x<=L && R <= y){
        return tree[No];
    }
    int Mid = (L+R)>>1;
    ll res=0;
    res = query(No<<1,L,Mid,x,y);
    res = max( res ,query(No<<1|1,Mid+1,R,x,y));
    return res;
}
int main()
{
    scanf("%lld%lld",&m,&p);
    Last = 0 ;
    while(m--){
        scanf("%s%lld",Ins,&t);
        if(Ins[0]=='A'){
            len++;
            t = ( t+Last )%p;
            Add(1,1,N,len,t);

        }else{
            tmp=query(1,1,N,len-t+1,len);
            Last = tmp;
            printf("%lld\n",tmp);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值