题目描述
给定一个正整数数列a1,a2,a3……an ,每一个数都在 0~p-1之间。可以对这列数进行两种操作:
- 添加操作:向序列后添加一个数,序列长度变成 n+1;
- 询问操作:询问这个序列中最后 L个数中最大的数是多少。
程序运行的最开始,整数序列为空。写一个程序,读入操作的序列,并输出询问操作的答案。
输入格式
第一行有两个正整数 m,p,意义如题目描述;
接下来 m 行,每一行表示一个操作。如果该行的内容是 Q L
,则表示这个操作是询问序列中最后 L 个数的最大数是多少;如果是 A t
,则表示向序列后面加一个数(t+a)%p,加入的数是 t。其中,a 是输入的参数, 是在这个添加操作之前最后一个询问操作的答案(如果之前没有询问操作,则a=0 )。
第一个操作一定是添加操作。对于询问操作, L>0且不超过当前序列的长度。
输出格式:
对于每一个询问操作,输出一行。该行只有一个数,即序列中最后 L个数的最大数。
样例输入
10 100
A 97
Q 1
Q 1
A 17
Q 2
A 63
Q 1
Q 1
Q 3
A 99
样例输出
97
97
97
60
60
97
【题意】:每次A都是往后插入一个t=(a+t)%p,强制在线的做法。
【题解】:
居然有一个ST表的做法,太厉害了,根据洛谷题解看到的,一位大佬反向建ST表。
然后这个题目直接处理即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+100;
ll m,p,len;
ll a[N],t,tmp,Last,f[N][21];
char Ins[N];
int main()
{
scanf("%lld%lld",&m,&p);
while(m--){
scanf("%s%lld",Ins,&t);
if( Ins[0]=='A' ){
t=(Last+t)%p;
f[++len][0] = t;
for(int i=1; len-(1<<i) >=0 ;i++){
f[len][i] = max ( f[len][i-1],f[len-(1<<i-1)][i-1]);
}
}else{
ll x = len-t+1, y=len;
ll k = log(t)/log(2.0);
tmp = max(f[y][k],f[x+(1<<k)-1][k]);
Last = tmp;
printf("%lld\n",tmp);
}
}
return 0;
}
【线段树】:
线段树只要先把空间开出来就是N,然后直接处理即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+10;
char Ins[10];
ll tree[N<<2],t,m,p,Last,tmp,len=0;
void Add(int No,int L,int R,int pos,ll val){
if( R < pos || pos < L ) return ;
if( L==R && R==pos){
tree[No] = val;
return ;
}
int Mid = (L+R)>>1;
Add(No<<1, L,Mid,pos,val);
Add(No<<1|1,Mid+1,R,pos,val);
tree[No] = max( tree[No<<1], tree[No<<1|1]);
}
ll query(int No,int L,int R,int x,int y){
if( R<x || y<L ){
return 0;
}if( x<=L && R <= y){
return tree[No];
}
int Mid = (L+R)>>1;
ll res=0;
res = query(No<<1,L,Mid,x,y);
res = max( res ,query(No<<1|1,Mid+1,R,x,y));
return res;
}
int main()
{
scanf("%lld%lld",&m,&p);
Last = 0 ;
while(m--){
scanf("%s%lld",Ins,&t);
if(Ins[0]=='A'){
len++;
t = ( t+Last )%p;
Add(1,1,N,len,t);
}else{
tmp=query(1,1,N,len-t+1,len);
Last = tmp;
printf("%lld\n",tmp);
}
}
return 0;
}