洛谷P1004: 方格取数

[NOIP2000 提高组] 方格取数

题目描述

设有 N × N N \times N N×N 的方格图 ( N ≤ 9 ) (N \le 9) (N9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 0 0 0。如下图所示(见样例):

A
 0  0  0  0  0  0  0  0
 0  0 13  0  0  6  0  0
 0  0  0  0  7  0  0  0
 0  0  0 14  0  0  0  0
 0 21  0  0  0  4  0  0
 0  0 15  0  0  0  0  0
 0 14  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
                         B

某人从图的左上角的 A A A 点出发,可以向下行走,也可以向右走,直到到达右下角的 B B B 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 0 0 0)。
此人从 A A A 点到 B B B 点共走两次,试找出 2 2 2 条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数 N N N(表示 N × N N \times N N×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 0 0 0 表示输入结束。

输出格式

只需输出一个整数,表示 2 2 2 条路径上取得的最大的和。

样例 #1

样例输入 #1

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

样例输出 #1

67

提示

NOIP 2000 提高组第四题

思路

思路1

思维dp,考虑成两个人同时走方格。

  1. 定义状态:dp[i][j][k][l], 第一个人走到(i,j), 第二个人走到(k,l)时的value。
  2. 状态转移:dp[i][j][k] = max(max(dp[i-1][j][k-1], dp[i-1][j][k]), max(dp[i][j-1][k-1], dp[i][j-1][k]))+map[i][j]+map[k][i+j-k];

对于思维dp中的每个一个状态,都可以从之前的某个状态得到,由于考虑成两人同时走,所以得到递推公式如上。
判断重复:当两人走到同一个方格时,即为重复,需要减map[i][j].
例如:dp[3][7][4][6]不需要担心其在map[3][5]处重复,因为dp[3][7][4][6]由dp[3][6][4][5](和其他三个状态)得到,而dp[3][6][4][5]由dp[3][5][3][5](和其他三个状态)得到。故对(3,5)位置时的重复判断早已进行,求dp[3][7][4][6]时不需考虑。

代码1

for(inti = 1; i <= n; i++) {
	for(int j = 1; j <= n; j++) {
		for(int k = 1; k <= n; k++) {
			for(int l = 1; l <= n; l++) {
				dp[i][j][k][l] = Math.max(Math.max(dp[i-1][j][k-1][l], dp[i-1][j][k][l-1]), Math.max(dp[i][j-1][k-1][l], dp[i][j-1][k][l-1]))
						+map[i][j]+map[k][l];
				if(i==k && j==l) dp[i][j][k][l] -= map[i][j];
			}
		}
	}
}

思路2

由思路1可知,只有当两人走到相同方格,才需判断去重。这暗含了两人需要走同一步数。所以,如果已知了第一个人的位置(即已知了已走的步数),那么只要再知道第二个人所在的行号,就能确定第二个人的位置。故,可优化成三维dp。

代码2

for(int i = 1; i <= n; i++) {
	for(int j = 1; j <= n; j++) {
		for(int k = 1; k <= i+j-1; k++) {
			dp[i][j][k] = Math.max(Math.max(dp[i-1][j][k-1], dp[i-1][j][k]), Math.max(dp[i][j-1][k-1], dp[i][j-1][k]))
					+map[i][j]+map[k][i+j-k];
			if(i==k) dp[i][j][k] -= map[i][j];
		}
	}
}
### P1004 方格 DFS 算法解决方案 #### 问题描述 给定 N×N 的方格图 (N≤9),每个方格内有非负整值。某人从左上角 A 出发,可向下或向右移动至右下角 B 。在此过程中,此人可以走经过的方格内的字(后该位置变为空白即值为0),目标是从起点到终点往返两次获得的最大总和。 #### 解决思路 采用深度优先搜索(Depth First Search, DFS)来遍历所有可能路径合并记录最优解。由于题目允许重复访问同一节点但不允许获已清零的据,因此需要维护两个状态分别表示第一次和第二次走过时的状态变化[^2]。 #### 实现细节 为了实现上述逻辑,定义递归函 `dfs(x,y)` 表示当前位于坐标 `(x,y)` 处,并考虑以下几点: - **边界条件**:当达到终点时更新全局变量保存最佳结果; - **方向控制**:每次尝试沿横向右侧以及纵向下方前进; - **状态回溯**:每步操作前后需恢复现场以便后续分支继续探索其他可能性; 此外还需注意避免越界错误及非法输入处理等问题。 ```cpp #include <iostream> using namespace std; const int MAX_N = 10; int n, map[MAX_N][MAX_N], visited[MAX_N][MAX_N]; bool flag; int ans; void dfs(int x, int y, int sum){ if(flag || x >= n || y >= n) return ;//防止越界 if(x==n-1 && y==n-1){ // 到达终点 if(sum>ans) ans=sum; flag=true; return ; } // 向右走 if(y+1<n&&!visited[x][y+1]){ visited[x][y]=true; dfs(x,y+1,sum+map[x][y]); visited[x][y]=false; } // 向下走 if(x+1<n&&!visited[x+1][y]){ visited[x][y]=true; dfs(x+1,y,sum+map[x][y]); visited[x][y]=false; } } int main(){ cin>>n; for(int i=0;i<n;++i) for(int j=0;j<n;++j) cin >> map[i][j]; memset(visited,false,sizeof(visited)); ans=-1e9; flag=false; dfs(0,0,0); cout << "最大值:" << ans*2 << endl;//因为要来回两次所以乘以二 return 0; } ``` 此代码片段实现了基本框架下的单次最优化路线寻找功能,但对于本题而言还需要进一步扩展成双程模式才能满足需求。具体做法是在首次成功抵达目的地之后重置标记位并将起始点设为目标点重新调用一次`dfs()`方法完成反向追踪过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值