现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。
输入格式:
输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(≤3N);随后的M行对应M条道路,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从1到N编号。
输出格式:
输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出−1,表示需要建设更多公路。
输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例:
12
分析:
此题找所有村落之间都能互通,且修路的代价最小,把村落抽象为顶点,把修路的代价抽象为边,本题即求最小生成树。那么所有村落互通即判断本图是否为连通图,如果图不连通,则无法达到要求。最小生成树的求法有普利姆算法和克鲁斯卡尔算法。我采用普利姆算法完成这道题。
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#define ZXJ nwu
struct
{
int adjvex;
int lowcost;
} closeedge[5000];
int matrix[5000][5000] = { 0 };
int visited[5000] = { 0 };
int n, m;
void dfs(int v0)
{
visited[v0] = 1;
for (int i = 0; i < n; i++)
{
if (!visited[i] && matrix[v0][i] != 100086)
{
dfs(i);
}
}
}
int IsConnected(int n, int m)
{
int count = 0;
for (int i = 0; i < n; i++)
{
if (!visited[i])
{
dfs(i);
count++;
}
}
return count;
}
int find_min_edge()
{
int min = 100086;
int min_index;
for (int i = 0; i < n; i++)
{
if (closeedge[i].lowcost > 0)
if (closeedge[i].lowcost < min)
{
min = closeedge[i].lowcost;
min_index = i;
}
}
return min_index;
}
int Prim()
{
int start = 0;
int sum = 0;
for (int i = 0; i < n; i++)
{
if (i != start)
{
closeedge[i].adjvex = start;
closeedge[i].lowcost = matrix[start][i];
}
}
for (int i = 1; i <= n - 1; i++)
{
int end;
end = find_min_edge();
start = closeedge[end].adjvex;
sum += matrix[start][end];
closeedge[end].lowcost = 0;
for (int j = 0; j < n; j++)
{
if (matrix[end][j] < closeedge[j].lowcost)
{
closeedge[j].lowcost = matrix[end][j];
closeedge[j].adjvex = end;
}
}
}
return sum;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
//if (i == j) matrix[i][j] = 0;
//else
matrix[i][j] = 100086;
}
}
while (m--)
{
int v1, v2, cost;
scanf("%d%d%d", &v1, &v2, &cost);
v1 = v1 - 1;
v2 = v2 - 1;
matrix[v1][v2] = cost;
matrix[v2][v1] = cost;
}
if (IsConnected(n, m) != 1)
printf("-1");
else
printf("%d", Prim());
}