【ElasticSearch入门】1、elasticsearch、kibana、logstash的安装

【ElasticSearch入门】1、elasticsearch、kibana、logstash的安装

一、安装

https://www.elastic.co/cn/downloads/elasticsearch

下载对应版本后,执行bin/elasticsearch 运行es

在这里插入图片描述

运行es之后,输入localhost:9200 查看es是否运行成功
在这里插入图片描述

运行成功!

安装分词插件。

bin/elasticsearch-plugin install analysis-icu

在这里插入图片描述

查看已安装插件

bin/elasticsearch-plugin list

在这里插入图片描述

安装kibana

注意:kibana版本要与es相同

https://www.elastic.co/downloads/kibana

启动kibana

bin/kibana

测试kibana

http://localhost:5601/

二、使用docker运行elasticsearch

使用docker可以使运行环境与本机隔离,从而使你可以通过多个docker容器取运行多个es实例。

  1. 安装docker https://www.docker.com/products/docker-desktop

  2. 在文件夹中创建一个开源的ELK配置

    version: '2.2'
    services:
      cerebro:
        image: lmenezes/cerebro:0.8.3
        container_name: cerebro
        ports:
          - "9000:9000"
        command:
          - -Dhosts.0.host=http://elasticsearch:9200
        networks:
          - es7net
      kibana:
        image: docker.elastic.co/kibana/kibana:7.1.0
        container_name: kibana7
        environment:
          - I18N_LOCALE=zh-CN
          - XPACK_GRAPH_ENABLED=true
          - TIMELION_ENABLED=true
          - XPACK_MONITORING_COLLECTION_ENABLED="true"
        ports:
          - "5601:5601"
        networks:
          - es7net
      elasticsearch:
        image: docker.elastic.co/elasticsearch/elasticsearch:7.1.0
        container_name: es7_01
        environment:
          - cluster.name=geektime
          - node.name=es7_01
          - bootstrap.memory_lock=true
          - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
          - discovery.seed_hosts=es7_01,es7_02
          - cluster.initial_master_nodes=es7_01,es7_02
        ulimits:
          memlock:
            soft: -1
            hard: -1
        volumes:
          - es7data1:/usr/share/elasticsearch/data
        ports:
          - 9200:9200
        networks:
          - es7net
      elasticsearch2:
        image: docker.elastic.co/elasticsearch/elasticsearch:7.1.0
        container_name: es7_02
        environment:
          - cluster.name=geektime
          - node.name=es7_02
          - bootstrap.memory_lock=true
          - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
          - discovery.seed_hosts=es7_01,es7_02
          - cluster.initial_master_nodes=es7_01,es7_02
        ulimits:
          memlock:
            soft: -1
            hard: -1
        volumes:
          - es7data2:/usr/share/elasticsearch/data
        networks:
          - es7net
    
    
    volumes:
      es7data1:
        driver: local
      es7data2:
        driver: local
    
    networks:
      es7net:
        driver: bridge
       
    
  3. 本地启动docker,mac记得运行docker桌面版,进入设置Resources调大内存 防止oom
    在这里插入图片描述

4、文件夹内执行 docker-compose up

依次执行localhost:9200 5601 9000

在这里插入图片描述

在这里插入图片描述

启动成功!!!

三、安装logstash与测试数据导入

logstash版本要与es相同

https://www.elastic.co/cn/downloads/logstash

下载测试数据集

https://grouplens.org/datasets/movielens/

下载

ml-latest-small.zip 即可

在logstash 的bin目录下新建logstash.conf

input {
  file {
    path => "/Users/yiruan/dev/elk7/logstash-7.0.1/bin/movies.csv"  目录改成你的
    start_position => "beginning"
    sincedb_path => "/dev/null"
  }
}
filter {
  csv {
    separator => ","
    columns => ["id","content","genre"]
  }

  mutate {
    split => { "genre" => "|" }
    remove_field => ["path", "host","@timestamp","message"]
  }

  mutate {

    split => ["content", "("]
    add_field => { "title" => "%{[content][0]}"}
    add_field => { "year" => "%{[content][1]}"}
  }

  mutate {
    convert => {
      "year" => "integer"
    }
    strip => ["title"]
    remove_field => ["path", "host","@timestamp","message","content"]
  }

}
output {
   elasticsearch {
     hosts => "http://localhost:9200"
     index => "movies"
     document_id => "%{id}"
   }
  stdout {}
}

运行

#启动Elasticsearch实例,然后启动 logstash,并制定配置文件导入数据
sudo bin/logstash -f /YOUR_PATH_of_logstash.conf 
#改成你的配置文件地址

在这里插入图片描述

等一等 导入成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值