-
观察一:任意两点的最短路不超过2k-1.
首先从一个城市到另外一个城市只有两种本质不同路径,一种是不用热气球,一种是用热气球。
所以基本想法就是把任意两个点的min(不用热气球,用热气球)加起来。
不用热气球相当于只能在铁路上走,所以距离就等于|i-j|,暴力枚举某个点左右O(k)个点即可(因为|i-j|要不超过2k-1),这个很容易。
下面讨论怎么计算用热气球的路径总和。先规定符号:
col[i]表示i号点的颜色;
f[i][c]表示i号点到颜色c的最短距离;
g[a][b]表示颜色a到颜色b的最短距离。那么i到j用了热气球的最短路为min(f[i][c]+f[j][c]+1),+1表示在c这里用了一次热气球。
暴力枚举是O(n^2·k)的。 -
观察二:g[col[i]][c]<=f[i][c]<=g[col[i]][c]+1,即点到团的距离至多是团到团的距离加一。
- 推论:g[col[i]][col[j]]<=dis(i,j)<=g[col[i]][col[j]]+2。
那么可令一个二进制串sta[i]表示i这个点f和g的差,换言之,如果g[col[i]][c]==f[i][c],则sta[i]的第c位是0,否则为1.
如果枚举起点i,终点的颜色b,中转热气球是a,那么用预处理的sta[]可以做到O(nk^2),这里不做过多阐述。
考虑枚举起点i的颜色a,终点j的颜色b。
那么a到b的路径大概可以分成一下几类:
1、dis(i,j)==g[a][b]且i->j用过热气球。
2、dis(i,j)==g[a][b]但i->j没用过热气球。
3、dis(i,j)==g[a][b]+1且i->j用过热气球。
4、dis(i,j)==g[a][b]+1但i->j没用过热气球。
5、dis(i,j)==g[a][b]+2.
5是最容易的,因为如果dis(i,j)==g[a][b]+2的话,中间一定用过热气球。
1、3也很容易,因为走过去的时候就用过热气球了。
考虑2和4,因为走过去的时候没用过热气球,所以要在a或b那里额外再用一次,答案额外+1。
那么只要利用预处理的sta[]还有另外一些东西就可以统计出以上五种路径的数量,那么就做完了。
复杂度是O(nk+k3+k2·2k).
还有一道类似但非常简单的二进制处理题HDU5823
#include<bits/stdc++.h>
#define maxn 1000050
#define maxm 2000050
#define maxk 16
#define maxs (1<<maxk)
using namespace std;
typedef long long LL;
int m,n,K,status;
int pos[maxn];
char s[maxn];
int col[maxn],col_cnt[maxn];
int last[maxk],mn[maxk];
void init()
{
scanf("%d%d%d",&n,&m,&K);
status=1<<K;
for (int c=0;c<K;++c)
col_cnt[c]=0;
for (int k=1;k<=m;++k)
{
scanf("%s",s+pos[k]);
pos[k+1]=pos[k]+strlen(s+pos[k]);
for (int i=pos[k];i<pos[k+1];++i)
++col_cnt[col[i]=s[i]-'a'];
}
}
int dis[maxk][maxn];
int dis_col[maxk][maxk];
int D,C;
void spfa()
{
memset(dis_col,0x3f,sizeof(dis_col));
for (int i=0;i<n;++i)
for (int c=0;c<K;++c)
dis[c][i]=K<<1;
for (int k=1;k<=m;++k)
{
for (int c=0;c<K;++c) last[c]=-1;
for (int i=pos[k];i<pos[k+1];++i)
{
last[col[i]]=i;
for (int c=0;c<K;++c)
if (~last[c])
{
int j=last[c],a=col[i];
dis_col[c][a]=min(dis_col[c][a],i-j),dis[c][i]=min(dis[c][i],i-j);
dis_col[a][c]=min(dis_col[a][c],i-j),dis[a][j]=min(dis[a][j],i-j);
}
}
}
for (int k=0;k<K;++k)
for (int i=0;i<K;++i)
for (int j=0;j<K;++j)
dis_col[i][j]=min(dis_col[i][j],dis_col[i][k]+dis_col[k][j]+1);
for (int k=1;k<=m;++k)
{
for (int c=0;c<K;++c) mn[c]=maxn;
for (int i=pos[k];i<pos[k+1];++i)
{
for (int c=0;c<K;++c)
mn[c]=min(mn[c],dis_col[col[i]][c]+1-i);
for (int c=0;c<K;++c) dis[c][i]=min(dis[c][i],i+mn[c]);
}
for (int c=0;c<K;++c) mn[c]=maxn;
for (int i=pos[k+1]-1;i>=pos[k];--i)
{
for (int c=0;c<K;++c)
mn[c]=min(mn[c],dis_col[col[i]][c]+1+i);
for (int c=0;c<K;++c) dis[c][i]=min(dis[c][i],mn[c]-i);
}
}
}
int sta[maxn];
int cnt[maxk][maxs],sum[maxk][maxs];
int sp[maxk][maxk][2];
void predo()
{
spfa();
for (int c=0;c<K;++c)
for (int s=0;s<status;++s)
cnt[c][s]=sum[c][s]=0;
for (int a=0;a<K;++a)
for (int b=0;b<K;++b)
for (int j=0;j<=1;++j)
{
sp[a][b][j]=0;
for (int c=0;c<K;++c)
if (dis_col[a][c]+1+dis_col[c][b]==dis_col[a][b]+j)
sp[a][b][j]|=1<<c;
}
for (int i=0;i<n;++i)
{
sta[i]=0;
for (int c=0;c<K;++c)
sta[i]|=(dis[c][i]-dis_col[c][col[i]])<<c;
++cnt[col[i]][sta[i]],++sum[col[i]][sta[i]];
}
//&
for (int c=0;c<K;++c)
for (int i=0;i<K;++i)
for (int s=0;s<status;++s)
if (s>>i&1)
sum[c][s^(1<<i)]+=sum[c][s];
}
LL solve()
{
LL ans=0;
for (int a=0;a<K;++a)
{
ans+=(LL)col_cnt[a]*(col_cnt[a]-1)/2;
for (int b=0;b<a;++b)
{
LL res=(LL)col_cnt[a]*col_cnt[b]*dis_col[a][b];
for (int s=0;s<status;++s)
{
if (!cnt[a][s]) continue;
int t=(~s&sp[a][b][0]);
if (t)
res+=(LL)cnt[a][s]*sum[b][t];
else
{
if (s>>b&1)
{
t=(~s&sp[a][b][1]);
res+=(LL)cnt[a][s]*(col_cnt[b]+sum[b][t]);
}
else
res+=(LL)cnt[a][s]*col_cnt[b];
}
}
ans+=res;
}
}
for (int k=1;k<=m;++k)
{
memset(last,-1,sizeof(last));
for (int i=pos[k];i<pos[k+1];++i)
{
for (int c=0;c<K;++c)
{
if (!~last[c]||c==col[i]) continue;
int j=last[c],a=col[i],b=col[j],d;
if (~sta[i]&~sta[j]&sp[b][a][0]) continue;
if (~sta[i]&~sta[j]&sp[b][a][1])
d=dis_col[a][b]+1;
else
d=dis_col[a][b]+2;
if (d>i-j)
ans+=(i-j)-d;
}
last[col[i]]=i;
}
}
return ans;
}
int main()
{
int T,icase=0;
scanf("%d",&T);
while (T--)
{
init();
predo();
printf("Case #%d: %lld\n",++icase,solve());
}
return 0;
}
`