初阶数据结构 二叉树常用函数(二)

函数一 求二叉树第K层的节点个数

还是一样 我们假设 K就是等于一

如果说是一个空数的话就返回0

如果说有值的话就返回一个1就可以

假设这个这层既不为空 又不是第K层的话 那么就说明第K层肯定是子树下面

那么就说明是左右子树的第(K-1)层

那么只将它们相加并且返回它们的值就好了

核心代码表示如下

//树的第k层个数
//树的第k层个数 = 左子树第k-1层个数+右子树第k-1层个数
int TreeLevle(BTNode* root, int k)
{
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	int leftk = TreeLevle(root->left, k - 1);
	int rightk = TreeLevle(root->right, k - 1);

	return leftk + rightk;
}

我们来看看结果怎么样

函数二求二叉树的深度

这里还是一样 我们先来看图

 

我们先来看第极限的情况

假如我们的本身就是一个空树的话 我们可以直接返回0

如果不是空树的话我们可以寻找我们的左子树和右子树中的较大值(一样大返回哪一个都可以)

将它们加一后返回就可以

核心代码如下

//树的高度
//当前树的高度=左右子树大的那个+1
int TreeHight(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	int leftHight = TreeHight(root->left);
	int rightHight = TreeHight(root->right);

	return leftHight > rightHight ? leftHight + 1 : rightHight + 1;
}

还是一样我们来看看效果

深度是4确实没错 

函数三 求某个值为X的节点

还是一样 我们首先考虑极限情况

假设值就在根上

那么我们直接返回根的位置就好了

否则的话我们就往左边右边子树遍历

我们来看看核心代码

 

//二叉树查找值为x的结点
BTNode* TreeFind(BTNode* root, BTDateType x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}
	
	BTNode* lret = TreeFind(root->left, x);
	if(lret)
	return lret;
	
	BTNode* rret = TreeFind(root->right, x);
	if(rret)
	return rret;

	return NULL;
}

我们发现这里可以找出来了

以上就是本篇博客的全部内容啦,如有错误请各位大佬不吝赐教,感谢留言

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值